FREE BOOKS

Author's List




PREV.   NEXT  
|<   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111  
112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   >>   >|  
stroke--the air is heated by contact with the hot plate C, and expands, forcing up the piston of the power cylinder, seen on the left of the engine. (The power crank and the displacer crank are, it should be mentioned, set at right angles to one another.) During the second half of the power stroke the displacer is moved downwards, causing some of the air to pass round it into contact with the cold plate D. It immediately contracts, and reduces the pressure on the power piston by the time that the piston has finished its stroke. When the power piston has reached the middle of its downward stroke, the displacer is at its lowest position, but is halfway up again when the power piston is quite down. The air is once again displaced downwards, and the cycle begins anew. The motive power is, therefore, provided by the alternate heating and cooling of the same air. Construction.--The barrel and supports were made out of a single piece of thin brass tubing, 2-7/16 inch internal diameter and 5-5/8 inch long. The heating end was filed up true, the other cut and filed to the shape indicated in Fig. 98 by dotted lines. The marking out was accomplished with the help of a strip of paper exactly as wide as the length of the tube, and as long as the tube's circumference. This strip had a line ruled parallel to one of its longer edges, and 2-1/2 inches from it, and was then folded twice, parallel to a shorter edge. A design like the shaded part of Fig. 98 was drawn on an end fold, and all the four folds cut through along this line with a pair of scissors. When opened out, the paper appeared as in Fig. 98. [Illustration: FIG. 98.] We now--to pass into the present tense--wrap this pattern round the tube and scratch along its edges. The metal is removed from the two hollows by cutting out roughly with a hack saw and finishing up to the lines with a file. The next things to take in hand are the displacer rod D and the guide tube in which it works. These must make so good a fit that when slightly lubricated they shall prevent the passage of air between them and yet set up very little friction. If you cannot find a piece of steel rod and brass tubing which fit close enough naturally, the only alternative is to rub down a rod, slightly too big to start with, until it will just move freely in the tube. This is a somewhat tedious business, but emery cloth will do it. The rod should be 3-3/8 inches, the tube 2-1/8 inches, long. I used rod
PREV.   NEXT  
|<   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111  
112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   >>   >|  



Top keywords:

piston

 
displacer
 

stroke

 

inches

 

heating

 

slightly

 

tubing

 

contact

 
parallel
 

scissors


pattern

 

finishing

 

hollows

 

removed

 

present

 
Illustration
 

roughly

 

opened

 
scratch
 

cutting


appeared

 

alternative

 

naturally

 

business

 
freely
 

tedious

 

things

 

lubricated

 

friction

 

prevent


passage

 

dotted

 
finished
 
reached
 

middle

 

downward

 

pressure

 

immediately

 

contracts

 

reduces


lowest

 
position
 

begins

 

motive

 

displaced

 

halfway

 

cylinder

 

engine

 
forcing
 
expands