FREE BOOKS

Author's List




PREV.   NEXT  
|<   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145  
146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   >>  
ster. Absolutely still air is needed for the best effects, as draughts make the rings lose shape very quickly and move erratically. Given good conditions, a lot of fun can be got out of the rings by shooting one through another which has expanded somewhat, or by destroying one by striking it with another, or by extinguishing a candle set up at a distance, and so on. The experimenter should notice how a vortex ring rotates in itself while moving forward, like a rubber ring being rolled along a stick. A continuous supply of smoke can be provided by the apparatus shown in Fig. 150. The bulb of a scent spray is needed to force ammonia gas through a box, made air-tight by a rubber band round the lid, in which is a pad soaked with hydrochloric acid. The smoke formed in this box is expelled through a pipe into the ring-making box. Caution.--When dealing with hydrochloric acid, take great care not to get it on your skin or clothes, as it is a very strong corrosive. XXVII. A RAIN-GAUGE. The systematic measurement of rainfall is one of those pursuits which prove more interesting in the doing than in the prospect. It enables us to compare one season or one year with another; tells us what the weather has been while we slept; affords a little mild excitement when thunderstorms are about; and compensates to a limited extent for the disadvantages of a wet day. The general practice is to examine the gauge daily (say at 10 a.m.); to measure the water, if any, collected during the previous twenty-four hours; and to enter the record at once. Gauges are made which record automatically the rainfall on a chart or dial, but these are necessarily much more expensive than those which merely catch the water for measurement. This last class, to which our attention will be confined chiefly, all include two principal parts--a metal receiver and a graduated glass measure, of much smaller diameter than the receiver, so that the divisions representing hundredths of an inch may be far enough apart to be distinguishable. It is evident that the smaller the area of the measure is, relatively to that of the receiver, the more widely spaced will the graduation marks of the measure be, and the more exact the readings obtained. [Illustration: FIG. 151.--Standard rain-gauge.] The gauge most commonly used is that shown in Fig. 151. It consists of an upper cylindrical part, usually 5 or 8 inches in diameter, at the inside of the rim, with i
PREV.   NEXT  
|<   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145  
146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   >>  



Top keywords:

measure

 
receiver
 

rubber

 
smaller
 
diameter
 

record

 

hydrochloric

 

measurement

 
rainfall
 
needed

expensive
 

disadvantages

 

necessarily

 

effects

 

confined

 

chiefly

 

attention

 

extent

 
limited
 
automatically

Gauges

 

general

 

examine

 

collected

 

include

 

draughts

 
previous
 
twenty
 

practice

 
Standard

commonly

 
readings
 

obtained

 
Illustration
 
consists
 

inches

 
inside
 

cylindrical

 

graduation

 
divisions

representing

 

hundredths

 

graduated

 

principal

 

compensates

 

Absolutely

 
widely
 

spaced

 

evident

 

distinguishable