FREE BOOKS

Author's List




PREV.   NEXT  
|<   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142  
143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   >>  
eighth of an inch away draw dotted parallel lines, all on the same side of their fellow lines in order of rotation. Cut out along the large circle, and then with a. sharp knife follow the lines shown double in Fig. 145. This gives eight little vanes, each of which must be bent upwards to approximately the same angle round a flat ruler held with an edge on the dotted line. Next make a dent with a lead pencil at the exact centre on the vane side, and revolve the pencil until the dent is well polished. [Illustration: FIG. 146.] Hold a pin, point upwards, in the right hand, and with the left centre the mill, vanes pointing downwards, on the pin (Fig. 146). The mill will immediately commence to revolve at a steady pace, and will continue to do so indefinitely; though, if the head of the pin be stuck in, say, a piece of bread, no motion will occur. The secret is that the heat of the hand causes a very slight upward current of warmed air, which is sufficient to make the very delicately poised windmill revolve. A Pneumatic Puzzle.--For the very simple apparatus illustrated by Fig. 147 one needs only half a cotton reel, three pins, and a piece of glass or metal tubing which fits the hole in the reel. Adjust a halfpenny centrally over the hole and stick the pins into the reel at three equidistant points, so that they do not quite touch the coin, and with their ends sloping slightly outwards to allow the halfpenny to fall away. [Illustration: FIG. 147.--Apparatus for illustrating an apparent scientific paradox.] Press the coin against the reel and blow hard through the tube. One would expect the coin to fall; but, on the contrary, the harder you blow the tighter will it stick, even if the reel be pointed downwards. Only when you stop blowing will it fall to the floor. This is a very interesting experiment, and will mystify onlookers who do not understand the reason for the apparent paradox, which is this. The air blown through the reel strikes a very limited part of the nearer side of the halfpenny. In order to escape, it has to make a right-angle turn and pass between coin and reel, and, while travelling in this direction, loses most of its repulsive force. The result is that the total pressure on the underside of the coin, plus the effect of gravity, is exactly balanced by the atmospheric pressure on the outside, and the coin remains at that distance from the reel which gives equilibrium of forces. When one stops blow
PREV.   NEXT  
|<   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142  
143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   >>  



Top keywords:

halfpenny

 
revolve
 

centre

 
pencil
 
Illustration
 

apparent

 

paradox

 

upwards

 
dotted
 
pressure

illustrating
 

atmospheric

 

scientific

 

Apparatus

 

distance

 

remains

 

balanced

 

effect

 
gravity
 
nearer

forces

 

equidistant

 

points

 

escape

 

sloping

 

slightly

 
outwards
 
equilibrium
 

strikes

 
onlookers

repulsive

 
interesting
 

experiment

 
mystify
 
travelling
 

reason

 
direction
 

understand

 

blowing

 
tighter

harder

 

contrary

 

expect

 

underside

 

result

 

limited

 
pointed
 

poised

 

approximately

 

pointing