FREE BOOKS

Author's List




PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   >>   >|  
he outside of the casing, and this method has the advantage of giving easy detachment for alteration or replacement. Balancing the Wheel.--As the wheel will revolve at very high speed, it should be balanced as accurately as possible. A simple method of testing is to rest the ends of the spindle on two carefully levelled straight edges. If the wheel persists in rolling till it takes up a certain position, lighten the lower part of the wheel by scraping off solder, or by cutting away bits of the vanes below the circumference of the disc, or by drilling holes in the disc itself. Securing the Wheel.--When the wheel has been finally adjusted relatively to the nozzle, tighten up all the spindle nuts hard, and drill a hole for a pin through them and the disc parallel to the spindle, and another through N3 and the spindle. (Fig. 70.) Gearing.--The gear wheels should be of good width, not less than 3/16 inch, and the smaller of steel, to withstand prolonged wear. Constant lubrication is needed, and to this end the cover should make an oil-tight fit with the casing, so that the bottom of the big pinion may run in oil. To prevent overfilling, make a plug-hole at the limit level, and fit a draw-off cock in the bottom of the cover. If oil ducts are bored in the bearing inside the cover, the splashed oil will lubricate the big pinion spindle automatically. [Illustration: FIG. 73.--Perspective view of completed turbine.] General--The sides of the casing are held against the drum by six screw bolts on the outside of the drum. The bottom of the sides is flattened as shown (Fig. 70), and the supports, S1 S2, made of such a length that when they are screwed down the flattened part is pressed hard against the bed. The oil box on top of the casing has a pad of cotton wool at the bottom to regulate the flow of oil to the bearings. Fit a drain pipe to the bottom of the wheel-case. Testing.--If your boiler will make steam above its working pressure faster than the turbine can use it, the nozzle may be enlarged with a broach until it passes all the steam that can be raised; or a second nozzle may be fitted on the other end of the diameter on which the first lies. This second nozzle should have a separate valve, so that it can be shut off. XVIL. STEAM TOPS. A very interesting and novel application of the steam turbine principle is to substitute for a wheel running in fixed bearings a "free" wheel pivoted on a vertical spind
PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   >>   >|  



Top keywords:

spindle

 
bottom
 
nozzle
 

casing

 
turbine
 
flattened
 
bearings
 

pinion

 

method

 

pivoted


supports
 

diameter

 

General

 

Illustration

 
Perspective
 
automatically
 

lubricate

 

inside

 

splashed

 
completed

interesting
 

separate

 

vertical

 

running

 
boiler
 

bearing

 

Testing

 
broach
 

principle

 
substitute

working
 

pressure

 

faster

 

application

 

fitted

 
pressed
 

screwed

 

enlarged

 

passes

 
regulate

cotton

 

raised

 

length

 

Constant

 
position
 

lighten

 

straight

 
persists
 

rolling

 

scraping