FREE BOOKS

Author's List




PREV.   NEXT  
|<   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163  
164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   >>   >|  
hown must be adopted. In the diagram the bottom of the slider runs on to a brass spring between the girder and the base of the appliance, and so gets jammed; the spiral spring acts merely as an additional guard. The diagram does not show the lower spring very clearly; it is a mere strip lying in the groove. A rod of quartz, with a needle at one end, is prepared as before and secured in the clamps. During the operation of fastening down the clamps, there is some danger of breaking the needle, and consequently it is advisable to soften the latter before and while adjusting the second clamp. The process of drawing a thread by this method is exactly similar to the operation already described in connection with the arrow method. Though short thick threads form the product generally obtained from the catapult, it must not be supposed that thin threads cannot be obtained in this way. If a short length of a very fine needle be heated, it will be found to yield threads quite fine enough for ordinary suspension purposes, but naturally not so uniform as those obtained from the 40-foot lengths obtainable by the bow-and-arrow method. It is easy to make spiral quartz springs resembling watch balance-springs by means of the catapult. All that is necessary is to see that the quartz is rather unequally heated before the shot is fired. In the future it is by no means impossible that such springs may have a real value, for the rigidity of quartz is known to increase as temperature rises. Hence it is probable that the springs would become stiffer as temperature rises, even though they work chiefly by bending, and little or not at all by twisting. As this is the kind of temperature variation required to compensate an uncompensated watch balance wheel, it may turn out to have some value. Sec. 87. Drawing Threads by the Flame alone. A stick of quartz is drawn down to a fine point, and the tip of this point is held in the blow-pipe flame in the position shown in Fig. 70. Fig. 70. The friction of the flame gases is found to be sufficient to carry forward the fused quartz and to draw it into threads in spite of the influence of the capillary forces. If a sheet of paper be suspended at a distance of two or three feet in front of the blow-pipe flame, it will be found to be covered with fine threads tangled together into a cobwebby mass. As this method is an exceedingly simple one of obtaining threads, I have endeavou
PREV.   NEXT  
|<   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163  
164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   >>   >|  



Top keywords:

threads

 

quartz

 
method
 

springs

 

obtained

 

temperature

 

needle

 

spring

 

operation

 

clamps


heated

 
balance
 
catapult
 

spiral

 
diagram
 
compensate
 

twisting

 

required

 

variation

 

uncompensated


Drawing

 

Threads

 

bending

 

probable

 

increase

 

girder

 

rigidity

 

chiefly

 

stiffer

 
distance

suspended

 

covered

 
tangled
 

obtaining

 

endeavou

 
simple
 

exceedingly

 
cobwebby
 

forces

 
capillary

position

 

adopted

 

bottom

 
slider
 

friction

 

influence

 
sufficient
 

forward

 

Though

 
connection