FREE BOOKS

Author's List




PREV.   NEXT  
|<   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191  
192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   >>   >|  
nd may be finished with fine sandpaper, then pumice dust and water, applied on felt. After cleaning the pumice off by means of water and a rag, the final touch may be given by means of vaseline, applied on cloth or on ebonite shavings. Sec. 106. Mica. A great variety of minerals go under this name. Speaking generally, the Russian micas coming into commerce are potash micas, and mica purchased in England may be taken to be potash mica, especially if it is in large sheets. At ordinary temperatures "mica" of the kind found in commerce is an excellent insulator. Schultze (Wied. Ann. vol. xxxvi. p. 655) comes to the conclusion that both at high and at low temperatures mica (of all kinds?) is a better insulator than white "mirror glass," the composition of which is not stated. The experiments of the author referred to were apparently left unfinished, and altogether too much stress must not be laid on the results obtained, one of which was that mica conducts electrolytically to some extent at high temperatures. Bouty (Journal de Physique, 1890 [9], 288) and J. Curie (These de Doctorat, Paris, 1888) agree in making the final conductivity of the mica used in Carpentier's condensers exceedingly small--at all events at ordinary temperatures. Bearing in mind that for such substances the term specific resistance has no very definite meaning, M. Bouty considers it is not less than 3.19 x 1028 E.M. units at ordinary temperatures. M. Bouty gives a note or illustration of what such numbers mean--a precaution not superfluous in cases where magnitudes are denoted logarithmically. Referring to the value quoted, viz. 3.19 x 1028, M. Bouty says, "Ce serait la resistance d'une colonne de mercure de 1mmq de section et de longueur telle que la lumiere se propageant dans le vide, mettrait plus de 3000 ans A se transmettre d'une extremite a I'autre de la colonne." M. Bouty returns to the study of mica (muscovite) in the Journal de Physique for 1892, p. 5, and there deals with the specific inductive capacity, which for a very small period of charge he finds has the value 8--an enormous value for such a good insulator, and one that it would be desirable to verify by some totally distinct method. This remark is enforced by the fact that M. Klemencic finds the number 6 for the same constant. The temperature coefficient of this constant was too small for M. Bouty to determine. The electric intensity was of the order of 100 vo
PREV.   NEXT  
|<   167   168   169   170   171   172   173   174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191  
192   193   194   195   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   >>   >|  



Top keywords:

temperatures

 
ordinary
 

insulator

 

specific

 

colonne

 

constant

 

Journal

 

resistance

 

Physique

 

applied


pumice

 

commerce

 

potash

 

sandpaper

 

mercure

 

serait

 

England

 

section

 

longueur

 

mettrait


propageant

 

lumiere

 

quoted

 

illustration

 

numbers

 

denoted

 

logarithmically

 

Referring

 
magnitudes
 

precaution


superfluous

 

enforced

 
Klemencic
 

number

 

remark

 

verify

 

totally

 

distinct

 

method

 

intensity


electric

 

determine

 
temperature
 

coefficient

 

desirable

 
muscovite
 

returns

 

transmettre

 

extremite

 
finished