FREE BOOKS

Author's List




PREV.   NEXT  
|<   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202  
203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   >>  
course, it may be dried by chemical means and distillation, but this is usually (or always) unnecessary. Fig 88. There is some danger of kerosene containing minute traces of sulphuric acid, and it and other oils may be conveniently tested for insulation in the following manner. The quartz electroscope is taken, and the insulating rod heated in the blow-pipe. The electroscope will now insulate well enough to show no appreciable collapse of the leaves in one or two hours' time. Upon the plate of the electroscope is put a platinum or copper cylinder, and this is filled with kerosene (say) up to a fixed mark. The electroscope is placed on a surface plate, or, at all events, on a sheet of plate glass, and a "scribing block" is placed along side it and the scriber adjusted to dip into the kerosene to any required depth. This is done by twisting a bit of wire round the scribing point and allowing it to project downwards. The point itself serves to give an idea of the height to which the vessel may be filled. The liquid is adjusted till its surface is in contact with the end of the scribing point, and the wire then projects into the liquid and forms an electrode of constant area of surface. The scribing block is put to earth. A charge is given to the electroscope, and the time required for a given degree of collapse of the leaves noted. The kerosene is then removed and its place taken by vaseline or paraffin, known to insulate well as a standard for comparison. The experiment is then repeated, and the time noted for the same degree of collapse. This test, though of course rough, is generally quite sufficient for workshop purposes, and is easily applied. Moreover, it does not require correction for electrometer leakage, as generally happens when more elaborate appliances are used. The actual resistance of insulating oils depends so much on the electrical intensity, on the duration of that intensity, and on the previous history of the oil as to the direction of the voltage to which it has been subjected--to say nothing of the effects of traces of moisture--that quantitative experiments are of no value unless they are extremely elaborate. I shall therefore only append the following numbers due to Bouty, Ann. de Chemie et de Physique (6), vol. xxvii. p. 62, 1892, in which the effect of the conductivity on the determination of the specific inductive capacity was properly allowed for:- Carbon Bisulphid
PREV.   NEXT  
|<   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202  
203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   >>  



Top keywords:

electroscope

 

kerosene

 
scribing
 

collapse

 

surface

 

leaves

 

insulate

 

required

 

intensity

 

liquid


filled

 
elaborate
 
insulating
 

degree

 
generally
 
traces
 

adjusted

 

depends

 

actual

 

resistance


experiment

 

electrical

 

repeated

 

workshop

 

leakage

 

require

 

electrometer

 

appliances

 

correction

 
sufficient

purposes

 

easily

 
Moreover
 

applied

 

moisture

 
Physique
 

Chemie

 
effect
 

properly

 
allowed

Carbon

 

Bisulphid

 

capacity

 
conductivity
 

determination

 

specific

 
inductive
 

numbers

 

subjected

 
effects