FREE BOOKS

Author's List




PREV.   NEXT  
|<   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173  
174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   >>   >|  
nt of the bit and to carry the tinning back at least half an inch from the edge. If the solder obstinately refuses to adhere, the cause is to be sought in the oxidation of the copper, or of the solder, or both--in either case the result of too high a temperature or too prolonged heating. The simple remedy is to get the iron hot, and then to dress it with an old file, so as to expose a bright surface, which is instantly passed over the resin as a means of preserving it from oxidation. If the process above described be now carried out, it will be found that the difficulty disappears. Before using the iron, wipe off any soot or coke or burned resin by means of an old rag. An iron tinned in this way is much to be preferred to one tinned by means of chloride of zinc. A shorter and more usual method is carried out as follows: The solution of chloride of zinc is prepared by adding bits of zinc to some commercial hydrochloric acid diluted with a little (say 25 per cent) of water. The acid may conveniently be placed in a small glazed white jar (a jam pot does excellently), and this should only be filled to about one-quarter of its capacity. An excess of zinc may be added. It may be fancy, but I prefer a soldering solution made in this way to a solution of chloride of zinc bought as a chemical product. The jar is generally mounted on a heavy leaden base, so as to avoid any danger of its getting knocked over, for nothing is so nasty or bad for tools as a bench on which this noxious liquid has been upset (Fig. 78). Fig. 78. To tin a soldering bit, a little of the fluid is dipped out of the jar on to a bit of tin plate bent up at the edges--a few drops is sufficient--and the iron is heated and rubbed about in the liquid with a drop of solder. If the iron is anything like clean it will tin at once and exhibit a very bright surface, but quite dirty copper may be tinned by dipping it for a moment in the liquid in the pot and then working it about over the solder. An iron so tinned remains covered with chloride of zinc, and this must be carefully wiped off if it is intended to use the iron with a resin or tallow flux in lead soldering. One disadvantage of this process is that the copper bit soon gets eaten into holes and requires to be dressed up afresh. On the other hand, an iron so tinned always presents a nice clean solder surface until the next time it is heated, when it generally becomes very dirty and req
PREV.   NEXT  
|<   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173  
174   175   176   177   178   179   180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   >>   >|  



Top keywords:
tinned
 
solder
 
chloride
 

soldering

 
surface
 

solution

 
liquid
 
copper
 

oxidation

 

process


heated

 
carried
 

bright

 

generally

 

mounted

 
product
 

dipped

 

chemical

 

danger

 

leaden


knocked

 

noxious

 

dressed

 

requires

 

carefully

 

covered

 

afresh

 

intended

 
disadvantage
 
tallow

remains

 
working
 

rubbed

 

presents

 

sufficient

 

dipping

 

moment

 

bought

 

exhibit

 

expose


instantly

 
passed
 

simple

 

remedy

 

preserving

 
Before
 
disappears
 

difficulty

 

heating

 
prolonged