FREE BOOKS

Author's List




PREV.   NEXT  
|<   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147  
148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   >>   >|  
ot very well known outside geological circles is the manipulation of the diamond-cutting wheel, and as this is often of great use in the physical laboratory, the following notes may not be out of place. I first became acquainted with the art in connection with the necessity which arose for me to make galvanometer mirrors out of fused quartz, and it was then that I discovered with surprise how difficult it is to obtain information on the point. I desire to express my indebtedness to my colleagues, Professor David and Mr. Smeeth, for the instruction they have given me. In what follows I propose to describe their practice rather than my own, which has been of a makeshift description. I will therefore select the process of cutting a slice of rock for microscopical investigation. Sec. 76. Arming a Wheel. Fig. 63. A convenient wheel is made out of tin-plate, i.e. mild steel sheet, about one-thirtieth of an inch thick and seven inches in diameter. This wheel must be quite flat and true, as well as round; too much pains cannot be taken in securing these qualities. After the wheel is mounted, it is better to turn it quite true by means of a watch-maker's "graver" or other suitable tool. The general design of a rock-cutting machine will be clear from the illustration (Fig. 63). The wheel being set up correctly, the next step is to arm it with diamond dust. For this purpose it is before all things necessary that real diamond dust should be obtained. The best plan is to procure a bit of "bort" which has been used in a diamond drill, and whose properties have therefore been tested to some extent. This is ground in a diamond mortar--or rather hammered in one--and passed through a sieve having at least 80 threads to the inch. The dust may be conveniently kept in oil. To arm the wheel, a little dust and oil is taken on the finger, and laid on round the periphery of the wheel. A bit of flint or agate is then held firmly against the edge of the wheel and the latter is rotated two or three times by hand. The rotation must be quite slow--say one turn in half a minute--and the flint must be held firmly and steadily against the wheel. Some operators prefer to hammer the diamond dust into the wheel with a lump of flint, or agate, but there is a risk of deforming the wheel in the process. When a new wheel is set up, it may be necessary to repeat the above process once every half hour or so till the cutting is satis
PREV.   NEXT  
|<   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147  
148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   >>   >|  



Top keywords:
diamond
 
cutting
 
process
 

firmly

 
tested
 

procure

 
properties
 
machine
 

illustration

 

design


general

 
suitable
 

correctly

 

things

 

purpose

 
obtained
 

conveniently

 

hammer

 

prefer

 

operators


rotation

 

minute

 

steadily

 

deforming

 

repeat

 

passed

 

extent

 

ground

 
mortar
 
hammered

threads

 
graver
 

rotated

 

periphery

 

finger

 

inches

 

surprise

 

difficult

 

obtain

 

information


discovered

 
galvanometer
 

mirrors

 

quartz

 

desire

 
Smeeth
 
instruction
 

express

 

indebtedness

 
colleagues