FREE BOOKS

Author's List




PREV.   NEXT  
|<   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259  
260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   >>   >|  
er C, fig. 8, was gilded, and completely surrounded by a nickel-plated steel enclosure B, forming the bulb of a mercury thermo-regulator, immersed in a large water-bath maintained at a constant temperature. In spite of the large corrections the results were extremely consistent, and the value of the temperature-coefficient of the diminution of the specific heat of water, deduced from the observed variation in the rate of rise at different points of the range 15 deg. to 25 deg., agreed with the value subsequently deduced from Rowland's experiments over the same range, when his thermometers were reduced to the same scale. Griffiths' final result for the average value of the calorie over this range was 4.192 joules, taking the E.M.F. of the Clark cell at 15 deg. C. to be 1.4342 volts. The difference from Rowland's value, 4.181, could be explained by supposing the E.M.F. of the Clark cells to have in reality been 1.4323 volts, or about 2 millivolts less than the value assumed. Griffiths subsequently applied the same method to the measurement of the specific heat of aniline, and the latent heat of vaporization of benzene and water. [Illustration: FIG. 8.] S 13. _Schuster and Gannon._--The method employed by A. Schuster and W. Gannon for the determination of the specific heat of water in terms of the international electric units (_Phil. Trans._ A, 1895, p. 415) corresponded to the expression ECT, and differed in many essential details from that of Griffiths. The current through a platinoid resistance of about 31 ohms in a calorimeter containing 1500 grammes of water was regulated so that the potential difference on its terminals was equal to that of twenty Board of Trade Clark cells in series. The duration of an experiment was about ten minutes, and the product of the mean current and the time, namely CT, was measured by the weight of silver deposited in a voltameter, which amounted to about 0.56 gramme. The uncertainty due to the correction for the water equivalent was minimized by making it small (about 27 grammes) in comparison with the water weight. The correction for external loss was reduced by employing a small rise of temperature (only 2.22 deg.), and making the rate of heat-supply relatively rapid, nearly 24 watts. The platinoid coil was insulated from the water by shellac varnish. The wire had a length of 760 cms., and the potential differenc
PREV.   NEXT  
|<   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259  
260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   >>   >|  



Top keywords:

temperature

 

specific

 

Griffiths

 

weight

 

reduced

 

subsequently

 
Rowland
 
Schuster
 

platinoid

 

Gannon


current

 

grammes

 

method

 

difference

 

potential

 

correction

 

making

 

deduced

 

comparison

 
employing

regulated

 

twenty

 

terminals

 

external

 

essential

 

details

 

differed

 

corresponded

 
expression
 

differenc


series

 

calorimeter

 

resistance

 

amounted

 

voltameter

 
deposited
 

insulated

 

silver

 

length

 

shellac


varnish

 
gramme
 

equivalent

 

measured

 

minutes

 

uncertainty

 
experiment
 

minimized

 

supply

 
product