FREE BOOKS

Author's List




PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   >>  
a Diesel engine operating with a compression ratio of about 16:1 is approximately 1000 degrees Fahr., which is far above the spontaneous-ignition temperature of the fuel used. Accordingly, when the fuel is injected in a highly atomized condition at some time previous to the piston reaching the end of its stroke, the fuel burns as it comes in contact with the highly heated air, and the greatly increased pressures resulting from the tremendous increase in temperature brought about by this combustion, acting on the pistons, drive the engine, as in the case of the gasoline engine. Summing up, the differences between the Diesel and gasoline engines start with the fact that the gasoline engine requires a complicated electrical ignition system in order to fire the combustible mixture, whereas the Diesel engine generates its own heat to start combustion by means of highly compressed air. This brings about the necessity for injecting the fuel in a well-atomized condition at the time that combustion is desired and the quantities of fuel injected at this time control the amount of heat generated; that is, an infinitesimally small quantity of fuel will be burned just as efficiently in the Diesel engine as a full charge of fuel, whereas in the gasoline engine the mixture ratio must be kept reasonably constant and, if the supply of fuel is to be cut down for throttling purposes, the supply of air must be correspondingly reduced. It is this requirement in a gasoline engine that necessitates an accurate and sensitive fuel-and-air metering device known as the carburetor. The fact that the air supply of a Diesel engine is compressed and its temperature raised to such a high degree permits the use of liquid fuels with a high ignition temperature. These fuels correspond more nearly to the crude petroleum oil as it issues from the wells and this fact accounts for the much lower cost of Diesel fuel as compared to the highly refined gasoline needed for aircraft engines. Weight-Saving Features In order to be successful in aviation use, the modern lightweight diesel of the time had to have its weight reduced from 25 lb/hp to 2.5 lb/hp. This required unusual design and construction methods, as follows: Crankcase: It weighed only 34 lb because of three factors: Magnesium alloy was used extensively in its construction, thus saving weight as compared with aluminum alloy, which was the conventional material at this time. It was a singl
PREV.   NEXT  
|<   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35  
36   37   38   39   40   41   42   43   44   45   46   47   >>  



Top keywords:
engine
 

gasoline

 

Diesel

 

highly

 

temperature

 

combustion

 
ignition
 
supply
 
reduced
 

weight


compared

 

compressed

 

engines

 
mixture
 

condition

 

injected

 

atomized

 

construction

 

issues

 

device


metering

 

accounts

 

requirement

 

necessitates

 
accurate
 

sensitive

 

petroleum

 

raised

 
degree
 

liquid


permits

 

correspond

 
carburetor
 

Features

 
Crankcase
 

weighed

 

aluminum

 

methods

 
unusual
 

design


conventional
 
saving
 

factors

 

Magnesium

 

extensively

 

required

 
Saving
 

successful

 

Weight

 

aircraft