FREE BOOKS

Author's List




PREV.   NEXT  
|<   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402  
403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   >>   >|  
I obtained the return charge, but only to an amount of 17 deg. or 18 deg.. Thus glass and sulphur, which are bodily very bad conductors of electricity, and indeed almost perfect insulators, gave very little of this return charge. 1243. I tried the same experiment having _air_ only in the inductive apparatus. After a continued high charge for some time I could obtain a little effect of return action, but it was ultimately traced to the shell-lac of the stem. 1244. I sought to produce something like this state with one electric power and without induction; for upon the theory of an electric fluid or fluids, that did not seem impossible, and then I should have obtained an absolute charge (1169. 1177.), or something equivalent to it. In this I could not succeed. I excited the outside of a cylinder of shell-lac very highly for some time, and then quickly discharging it (1203.), waited and watched whether any return charge would appear, but such was not the case. This is another fact in favour of the inseparability of the two electric forces (1177.), and another argument for the view that induction and its concomitant phenomena depend upon a polarity of the particles of matter. 1245. Although inclined at first to refer these effects to a peculiar masked condition of a certain portion of the forces, I think I have since correctly traced them to known principles of electrical action. The effects appear to be due to an actual penetration of the charge to some distance within the electric, at each of its two surfaces, by what we call _conduction_; so that, to use the ordinary phrase, the electric forces sustaining the induction are not upon the metallic surfaces only, but upon and within the dielectric also, extending to a greater or smaller depth from the metal linings. Let _c_ (fig. 113.) be the section of a plate of any dielectric, _a_ and _b_ being the metallic coatings; let _b_ be uninsulated, and _a_ be charged positively; after ten or fifteen minutes, if _a_ and _b_ be discharged, insulated, and immediately examined, no electricity will appear in them; but in a short time, upon a second examination, they will appear charged in the same way, though not to the same degree, as they were at first. Now suppose that a portion of the positive force has, under the coercing influence of all the forces concerned, penetrated the dielectric and taken up its place at the line _p_, a corresponding portion of the negative force havin
PREV.   NEXT  
|<   378   379   380   381   382   383   384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402  
403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   >>   >|  



Top keywords:

charge

 

electric

 
return
 

forces

 

induction

 

portion

 
dielectric
 
action
 

metallic

 

traced


charged
 
surfaces
 
obtained
 

electricity

 

effects

 

extending

 
electrical
 

principles

 

linings

 

correctly


smaller

 

greater

 

conduction

 

penetration

 

actual

 

sustaining

 

phrase

 

distance

 

ordinary

 

coercing


influence

 

positive

 

suppose

 

degree

 

concerned

 
negative
 
penetrated
 

uninsulated

 

positively

 

coatings


section
 
fifteen
 

minutes

 

examination

 

examined

 

immediately

 
discharged
 

insulated

 
inseparability
 

ultimately