FREE BOOKS

Author's List




PREV.   NEXT  
|<   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431  
432   433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   448   449   450   451   452   453   454   455   456   >>   >|  
r; since the moment we leave in the smallest degree perfection at either extremity, we involve the element of perfection at the opposite end? Especially too, as we have not in nature the case of perfection either at one extremity or the other, either of insulation or conduction. 1331. Again, to return to this beautiful experiment in the various forms which may be given to it: the forces are not all in the wire (after they have left the Leyden jar) during the whole time (1328.) occupied by the discharge; they are disposed in part through the surrounding dielectric under the well-known form of induction; and if that dielectric be air, induction takes place from the wire through the air to surrounding conductors, until the ends of the wire are electrically related through its length, and discharge has occurred, i.e. for the _time_ during which the middle spark is retarded beyond the others. This is well shown by the old experiment, in which a long wire is so bent that two parts (Plate VIII. fig. 115.), _a, b_, near its extremities shall approach within a short distance, as a quarter of an inch, of each other in the air. If the discharge of a Leyden jar, charged to a sufficient degree, be sent through such a wire, by far the largest portion of the electricity will pass as a spark across the air at the interval, and not by the metal. Does not the middle part of the wire, therefore, act here as an insulating medium, though it be of metal? and is not the spark through the air an indication of the tension (simultaneous with _induction_) of the electricity in the ends of this single wire? Why should not the wire and the air both be regarded as dielectrics; and the action at its commencement, and whilst there is tension, as an inductive action? If it acts through the contorted lines of the wire, so it also does in curved and contorted lines through air (1219, 1224, 1231.), and other insulating dielectrics (1228); and we can apparently go so far in the analogy, whilst limiting the case to the inductive action only, as to show that amongst insulating dielectrics some lead away the lines of force from others (1229.), as the wire will do from worse conductors, though in it the principal effect is no doubt due to the ready discharge between the particles whilst in a low state of tension. The retardation is for the time insulation; and it seems to me we may just as fairly compare the air at the interval _a, b_ (fig. 115.) and the wire i
PREV.   NEXT  
|<   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431  
432   433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   448   449   450   451   452   453   454   455   456   >>   >|  



Top keywords:

discharge

 

insulating

 

perfection

 
dielectrics
 

tension

 
induction
 

whilst

 
action
 

inductive

 
contorted

conductors

 
dielectric
 
surrounding
 
middle
 

electricity

 
experiment
 

degree

 

Leyden

 

insulation

 
interval

extremity

 

fairly

 
single
 

simultaneous

 

indication

 

compare

 

medium

 

regarded

 

commencement

 

effect


principal

 

retardation

 

particles

 
curved
 

apparently

 

analogy

 
limiting
 

forces

 
beautiful
 

disposed


occupied

 
return
 

smallest

 
involve
 

element

 

moment

 
opposite
 

conduction

 

nature

 

Especially