FREE BOOKS

Author's List




PREV.   NEXT  
|<   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   442   443   444   445   446   447  
448   449   450   451   452   453   454   455   456   457   458   459   460   461   462   463   464   465   466   467   468   469   470   471   472   >>   >|  
manner, and on the same principle (1375.), from the molecular theory. 1377. Here I think my view of induction has a decided advantage over others, especially over that which refers the retention of electricity on the surface of conductors in air to the _pressure of the atmosphere_ (1305.). The latter is the view which, being adopted by Poisson and Biot[A], is also, I believe, that generally received; and it associates two such dissimilar things, as the ponderous air and the subtile and even hypothetical fluid or fluids of electricity, by gross mechanical relations; by the bonds of mere static pressure. My theory, on the contrary, sets out at once by connecting the electric forces with the particles of matter; it derives all its proofs, and even its origin in the first instance, from experiment; and then, without any further assumption, seems to offer at once a full explanation of these and many other singular, peculiar, and, I think, heretofore unconnected effects. [A] Encyclopaedia Britannica, Supplement, vol. iv. Article Electricity, pp. 76, 81. &c. 1378. An important assisting experimental argument may here be adduced, derived from the difference of specific inductive capacity of different dielectrics (1269. 1274. 1278.). Consider an insulated sphere electrified positively and placed in the centre of another and larger sphere uninsulated, a uniform dielectric, as air, intervening. The case is really that of my apparatus (1187.), and also, in effect, that of any ball electrified in a room and removed to some distance from irregularly-formed conductors. Whilst things remain in this state the electricity is distributed (so to speak) uniformly over the surface of the electrified sphere. But introduce such a dielectric as sulphur or lac, into the space between the two conductors on one side only, or opposite one part of the inner sphere, and immediately the electricity on the latter is diffused unequally (1229. 1270. 1309.), although the form of the conducting surfaces, their distances, and the _pressure_ of the atmosphere remain perfectly unchanged. 1379. Fusinieri took a different view from that of Poisson, Biot, and others, of the reason why rarefaction of air caused easy diffusion of electricity. He considered the effect as due to the removal of the _obstacle_ which the air presented to the expansion of the substances from which the electricity passed[A]. But platina balls show the phenomena _in vacuo_ as
PREV.   NEXT  
|<   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   442   443   444   445   446   447  
448   449   450   451   452   453   454   455   456   457   458   459   460   461   462   463   464   465   466   467   468   469   470   471   472   >>   >|  



Top keywords:

electricity

 

sphere

 

electrified

 
conductors
 

pressure

 
things
 

effect

 
remain
 

Poisson

 
dielectric

surface

 
theory
 
atmosphere
 
introduce
 

removed

 
irregularly
 

sulphur

 

distance

 

Whilst

 
uniformly

distributed

 

formed

 
larger
 

Consider

 

insulated

 

positively

 

capacity

 

dielectrics

 

centre

 

apparatus


intervening

 

uniform

 

uninsulated

 
diffusion
 

considered

 

caused

 
reason
 

rarefaction

 
removal
 

obstacle


phenomena

 
platina
 

passed

 
presented
 

expansion

 

substances

 
Fusinieri
 

immediately

 

diffused

 

unequally