FREE BOOKS

Author's List




PREV.   NEXT  
|<   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247  
248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   >>   >|  
bonic oxide, at the _anode_. Hence it appears that acetic acid is not electrolyzable, but that a portion of it is decomposed by the oxygen evolved at the _anode_, producing secondary results, varying with the strength of the acid, the intensity of the current, and other circumstances. 774. _Acetates._--One of these has been referred to already, as affording only secondary results relative to the acetic acid (749.). With many of the metallic acetates the results at both electrodes are secondary (746. 750.). Acetate of soda fused and anhydrous is directly decomposed, being, as I believe, a true electrolyte, and evolving soda and acetic acid at the _cathode_ and _anode_. These however have no sensible duration, but are immediately resolved into other substances; charcoal, sodiuretted hydrogen, &c., being set free at the former, and, as far as I could judge under the circumstances, acetic acid mingled with carbonic oxide, carbonic acid, &c. at the latter. 775. _Tartaric acid._--Pure solution of tartaric acid is almost as bad a conductor as pure water. On adding sulphuric acid, it conducted well, the results at the positive electrode being primary or secondary in different proportions, according to variations in the strength of the acid and the power of the electric current (752.). Alkaline tartrates gave a large proportion of secondary results at the positive electrode. The hydrogen at the negative electrode remained constant unless certain triple metallic salts were used. 776. Solutions, of salts containing other vegetable acids, as the benzoates; of sugar, gum, &c., dissolved in dilute sulphuric acid; of resin, albumen, &c., dissolved in alkalies, were in turn submitted to the electrolytic power of the voltaic current. In all these cases, secondary results to a greater or smaller extent were produced at the positive electrode. 777. In concluding this division of these Researches, it cannot but occur to the mind that the final result of the action of the electric current upon substances, placed between the electrodes, instead of being simple may be very complicated. There are two modes by which these substances may be decomposed, either by the direct force of the electric current, or by the action of bodies which that current may evolve. There are also two modes by which new compounds may be formed, i.e. by combination of the evolving substances whilst in their nascent state (658.), directly with the matter of th
PREV.   NEXT  
|<   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247  
248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   >>   >|  



Top keywords:

secondary

 

current

 

results

 

electrode

 

acetic

 

substances

 
positive
 
electric
 

decomposed

 

carbonic


directly

 

dissolved

 

electrodes

 

evolving

 

metallic

 

strength

 

action

 

circumstances

 

sulphuric

 
hydrogen

dilute

 

electrolytic

 

alkalies

 

submitted

 

albumen

 

voltaic

 

constant

 

remained

 
negative
 

proportion


triple

 

greater

 

benzoates

 

vegetable

 

Solutions

 
compounds
 

formed

 

evolve

 

direct

 

bodies


matter

 
nascent
 

combination

 

whilst

 

complicated

 

division

 
Researches
 

concluding

 

extent

 
produced