FREE BOOKS

Author's List




PREV.   NEXT  
|<   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288  
289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   >>   >|  
ir of plates, and may be considered as elementary _voltaic forces_. Iodide of potassium (solution). Chloride of silver (fused). Protochloride of tin (fused). Chloride of lead (fused). Iodide of lead (fused). Muriatic acid (solution). Water, acidulated with sulphuric acid. 913. It is essential that, in all endeavours to obtain the relative electrolytic intensity necessary for the decomposition of different bodies, attention should be paid to the nature of the electrodes and the other bodies present which may favour secondary actions (986.). If in electro-decomposition one of the elements separated has an affinity for the electrode, or for bodies present in the surrounding fluid, then the affinity resisting decomposition is in part balanced by such power, and the true place of the electrolyte in a table of the above kind is not obtained: thus, chlorine combines with a positive platina electrode freely, but iodine scarcely at all, and therefore I believe it is that the fused chlorides stand first in the preceding Table. Again, if in the decomposition of water not merely sulphuric but also a little nitric acid be present, then the water is more freely decomposed, for the hydrogen at the _cathode_ is not ultimately expelled, but finds oxygen in the nitric acid, with which it can combine to produce a secondary result; the affinities opposing decomposition are in this way diminished, and the elements of the water can then be separated by a current of lower intensity. 914. Advantage may be taken of this principle to interpolate more minute degrees into the scale of initial intensities already referred to (909. 911.) than is there spoken of; for by combining the force of a current _constant_ in its intensity, with the use of electrodes consisting of matter, having more or less affinity for the elements evolved from the decomposing electrolyte, various intermediate degrees may be obtained. * * * * * 915. Returning to the consideration of the source of electricity (878. &c.), there is another proof of the most perfect kind that metallic contact has nothing to do with the _production_ of electricity in the voltaic circuit, and further, that electricity is only another mode of the exertion of chemical forces. It is, the production of the _electric spark_ before any contact of metals is made, and by the exertion of _pure and unmixed chemical forces_. The experiment, which will be descr
PREV.   NEXT  
|<   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288  
289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   >>   >|  



Top keywords:

decomposition

 

intensity

 
affinity
 

present

 
electricity
 

bodies

 

elements

 
forces
 

solution

 

secondary


Chloride

 

electrodes

 

nitric

 
degrees
 

Iodide

 

electrode

 
separated
 

voltaic

 

contact

 

current


obtained
 

production

 
exertion
 
chemical
 

sulphuric

 
freely
 

electrolyte

 

combining

 

experiment

 

spoken


referred

 

Advantage

 

diminished

 
opposing
 

principle

 

initial

 

intensities

 

constant

 

interpolate

 

minute


metallic

 

perfect

 
metals
 

electric

 

circuit

 

unmixed

 

matter

 

consisting

 

evolved

 
decomposing