FREE BOOKS

Author's List




PREV.   NEXT  
|<   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297  
298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   >>   >|  
sing solution of ammonia instead of solution of potassa; and as it, when pure, is like water, a bad conductor (554.), it was occasionally improved in that power by adding sulphate of ammonia to it. But in all the cases the results were the same as before; decompositions of the same kind were effected, and the electric current producing these was in the same direction as in the experiments just described. 935. In order to put the equal and similar action of acid and alkali to stronger proof, arrangements were made as in fig. 80.; the glass vessel A contained dilute sulphuric acid, the corresponding glass vessel B solution of potassa, PP was a plate of platina dipping into both solutions, and ZZ two plates of amalgamated zinc connected with a delicate galvanometer. When these were plunged at the same time into the two vessels, there was generally a first feeble effect, and that in favour of the alkali, i.e. the electric current tended to pass through the vessels in the direction of the arrow, being the reverse direction of that which the acid in A would have produced alone: but the effect instantly ceased, and the action of the plates in the vessels was so equal, that, being contrary because of the contrary position of the plates, no permanent current resulted. 936. Occasionally a zinc plate was substituted for the plate PP, and platina plates for the plates ZZ; but this caused no difference in the results: nor did a further change of the middle plate to copper produce any alteration. 937. As the opposition of electro-motive pairs of plates produces results other than those due to the mere difference of their independent actions (1011. 1045.), I devised another form of apparatus, in which the action of acid and alkali might be more directly compared. A cylindrical glass cup, about two inches deep within, an inch in internal diameter, and at least a quarter of an inch in thickness, was cut down the middle into halves, fig. 81. A broad brass ring, larger in diameter than the cup, was supplied with a screw at one side; so that when the two halves of the cup were within the ring, and the screw was made to press tightly against the glass, the cup held any fluid put into it. Bibulous paper of different degrees of permeability was then cut into pieces of such a size as to be easily introduced between the loosened halves of the cup, and served when the latter were tightened again to form a porous division down the middle of
PREV.   NEXT  
|<   273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297  
298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   >>   >|  



Top keywords:

plates

 

alkali

 
action
 

direction

 
current
 

halves

 

results

 
solution
 

middle

 

vessels


potassa

 

platina

 

vessel

 
difference
 

diameter

 

effect

 
ammonia
 

contrary

 

electric

 

apparatus


copper
 

produce

 
produces
 
motive
 

electro

 
opposition
 

actions

 

independent

 

alteration

 

directly


devised

 

porous

 

tightened

 
Bibulous
 

degrees

 

served

 

easily

 

loosened

 

permeability

 

pieces


tightly

 

internal

 
introduced
 

inches

 

cylindrical

 

division

 

quarter

 

thickness

 

supplied

 
larger