FREE BOOKS

Author's List




PREV.   NEXT  
|<   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347  
348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   >>   >|  
e portion of electricity passing through it. Hence it was impossible to distinguish the particular effects at the moments of making or breaking contact from this constant effect. On using the thick wire helix (1055.), the same results ensued. 1083. Proceeding upon the known fact that electric currents of great quantity but low intensity, though able to ignite thick wires, cannot produce that effect upon thin ones, I used a very fine platina wire at _x_, reducing its diameter until a spark appeared at G or E, when contact was broken there. A quarter of an inch of such wire might be introduced at _x_ without being ignited by the _continuance_ of contact at G or E; but when contact was broken at either place, this wire became red-hot; proving, by this method, the production of the induced current at that moment. 1084. _Chemical decomposition_ was next effected by the cross-wire current, an electro-magnet being used at D, and a decomposing apparatus, with solution of iodide of potassium in paper (1079.), employed at _x_. The conducting power of the connecting system A B D was sufficient to carry all the primary current, and consequently no chemical action took place at _x_ during the _continuance_ of contact at G and E; but when contact was broken, there was instantly decomposition at _x_. The iodine appeared against the wire N, and not against the wire P; thus demonstrating that the current through the cross-wires, when contact was broken, was in the _reverse direction_ to that marked by the arrow, or that which the electromotor would have sent through it. 1085. In this experiment a bright spark occurs at the place of disjunction, indicating that only a small part of the extra current passed the apparatus at _x_, because of the small conducting power of the latter. 1086. I found it difficult to obtain the chemical effects with the simple helices and wires, in consequence of the diminished inductive power of these arrangements, and because of the passage of a strong constant current at _x_ whenever a very active electromotor was used (1082). 1087. The most instructive set of results was obtained, however, when the _galvanometer_ was introduced at _x_. Using an electro-magnet at D, and continuing contact, a current was then indicated by the deflection, proceeding from P to N, in the direction of the arrow; the cross-wire serving to carry one part of the electricity excited by the electromotor, and that part of the ar
PREV.   NEXT  
|<   323   324   325   326   327   328   329   330   331   332   333   334   335   336   337   338   339   340   341   342   343   344   345   346   347  
348   349   350   351   352   353   354   355   356   357   358   359   360   361   362   363   364   365   366   367   368   369   370   371   372   >>   >|  



Top keywords:

contact

 

current

 
broken
 

electromotor

 

introduced

 
appeared
 
direction
 
conducting
 

chemical

 

apparatus


magnet
 

continuance

 

decomposition

 
electro
 
constant
 
electricity
 
results
 

effects

 

effect

 
obtained

demonstrating

 

marked

 

deflection

 

instructive

 

reverse

 
serving
 

continuing

 

iodine

 

instantly

 

galvanometer


action

 

helices

 
proceeding
 

simple

 

consequence

 

diminished

 

inductive

 
obtain
 

excited

 

difficult


passed

 

primary

 

arrangements

 

passage

 

active

 
experiment
 
strong
 

indicating

 

disjunction

 

bright