FREE BOOKS

Author's List




PREV.   NEXT  
|<   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251  
252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   >>   >|  
that it could not by any shake of the hand or apparatus touch the negative electrode at the bottom of the vessel. The whole arrangement is delineated in fig. 69. 790. Under these circumstances the chloride of tin was decomposed: the chlorine evolved at the positive electrode formed bichloride of tin (779.), which passed away in fumes, and the tin evolved at the negative electrode combined with the platina, forming an alloy, fusible at the temperature to which the tube was subjected, and therefore never occasioning metallic communication through the decomposing chloride. When the experiment had been continued so long as to yield a reasonable quantity of gas in the volta-electrometer, the battery connexion was broken, the positive electrode removed, and the tube and remaining chloride allowed to cool. When cold, the tube was broken open, the rest of the chloride and the glass being easily separable from the platina wire and its button of alloy. The latter when washed was then reweighed, and the increase gave the weight of the tin reduced. 791. I will give the particular results of one experiment, in illustration of the mode adopted in this and others, the results of which I shall have occasion to quote. The negative electrode weighed at first 20 grains; after the experiment, it, with its button of alloy, weighed 23.2 grains. The tin evolved by the electric current at the _cathode_: weighed therefore 3.2 grains. The quantity of oxygen and hydrogen collected in the volta-electrometer = 3.85 cubic inches. As 100 cubic inches of oxygen and hydrogen, in the proportions to form water, may be considered as weighing 12.92 grains, the 3.85 cubic inches would weigh 0.49742 of a grain; that being, therefore, the weight of water decomposed by the same electric current as was able to decompose such weight of protochloride of tin as could yield 3.2 grains of metal. Now 0.49742 : 3.2 :: 9 the equivalent of water is to 57.9, which should therefore be the equivalent of tin, if the experiment had been made without error, and if the electro-chemical decomposition _is in this case also definite_. In some chemical works 58 is given as the chemical equivalent of tin, in others 57.9. Both are so near to the result of the experiment, and the experiment itself is so subject to slight causes of variation (as from the absorption of gas in the volta-electrometer (716.), &c.), that the numbers leave little doubt of the applicability of the _law of
PREV.   NEXT  
|<   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251  
252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   >>   >|  



Top keywords:

experiment

 

grains

 

electrode

 

chloride

 
chemical
 
evolved
 

weight

 

equivalent

 

electrometer

 

weighed


inches

 
negative
 

quantity

 

button

 
oxygen
 

results

 
hydrogen
 
current
 
electric
 

broken


platina

 

positive

 
decomposed
 

subject

 

slight

 
result
 

proportions

 

applicability

 
cathode
 
absorption

collected
 

numbers

 
variation
 
weighing
 

protochloride

 

definite

 

decomposition

 

electro

 
decompose
 

considered


combined

 
forming
 

passed

 

formed

 

bichloride

 

fusible

 

metallic

 

communication

 

occasioning

 

temperature