FREE BOOKS

Author's List




PREV.   NEXT  
|<   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109  
110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   >>   >|  
in length may easily be drawn from the conductors. Each turn of the machine, when worked moderately, occupies about 4/5ths of a second. 291. The electric battery consisted of fifteen equal jars. They are coated eight inches upwards from the bottom, and are twenty-three inches in circumference, so that each contains one hundred and eighty-four square inches of glass, coated on both sides; this is independent of the bottoms, which are of thicker glass, and contain each about fifty square inches. 292. A good _discharging train_ was arranged by connecting metallically a sufficiently thick wire with the metallic gas pipes of the house, with the metallic gas pipes belonging to the public gas works of London; and also with the metallic water pipes of London. It was so effectual in its office as to carry off instantaneously electricity of the feeblest tension, even that of a single voltaic trough, and was essential to many of the experiments. 293. The galvanometer was one or the other of those formerly described (87. 205.), but the glass jar covering it and supporting the needle was coated inside and outside with tinfoil, and the upper part (left uncoated, that the motions of the needle might be examined,) was covered with a frame of wire-work, having numerous sharp points projecting from it. When this frame and the two coatings were connected with the discharging train (292.), an insulated point or ball, connected with the machine when most active, might be brought within an inch of any part of the galvanometer, yet without affecting the needle within by ordinary electrical attraction or repulsion. 294. In connexion with these precautions, it may be necessary to state that the needle of the galvanometer is very liable to have its magnetic power deranged, diminished, or even inverted by the passage of a shock through the instrument. If the needle be at all oblique, in the wrong direction, to the coils of the galvanometer when the shock passes, effects of this kind are sure to happen. 295. It was to the retarding power of bad conductors, with the intention of diminishing its _intensity_ without altering its _quantity_, that I first looked with the hope of being able to make common electricity assume more of the characters and power of voltaic electricity, than it is usually supposed to have. 296, The coating and armour of the galvanometer were first connected with the discharging train (292.); the end B (87.) of the g
PREV.   NEXT  
|<   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109  
110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   >>   >|  



Top keywords:

galvanometer

 

needle

 
inches
 

coated

 

electricity

 

connected

 

metallic

 

discharging

 

conductors

 
London

voltaic

 
machine
 
square
 
diminishing
 
intensity
 

intention

 

affecting

 

repulsion

 

attraction

 

ordinary


electrical

 

brought

 

coatings

 

projecting

 

looked

 

points

 

active

 

quantity

 
insulated
 

altering


connexion

 

precautions

 

characters

 

numerous

 
instrument
 
common
 

passes

 
assume
 
direction
 

oblique


passage
 
inverted
 

liable

 

retarding

 

armour

 

effects

 

magnetic

 

coating

 

supposed

 

happen