_Canon V._ If one premiss is negative, the conclusion must be
negative.
If one premiss is negative, one of the Extremes must be excluded in
whole or in part from the Middle term. The other must therefore (under
Canon IV.) declare some coincidence between the Middle term and the
other extreme; and the conclusion can only affirm exclusion in whole
or in part from the area of this coincidence.
_Canon VI._ No conclusion can be drawn from two particular premisses.
This is evident upon a comparison of terms in all possible positions,
but it can be more easily demonstrated with the help of the preceding
canons. The premisses cannot both be particular and yield a conclusion
without breaking one or other of those canons.
Suppose both are affirmative, II, the Middle is not distributed in
either premiss.
Suppose one affirmative and the other negative, IO, or OI. Then,
whatever the Figure may be, that is, whatever the order of the terms,
only one term can be distributed, namely, the predicate of O. This
(Canon II.) must be the Middle. But in that case there must be Illicit
Process of the Major (Canon III.), for one of the premisses being
negative, the conclusion is negative (Canon V.), and P its predicate
is distributed. Briefly, in a negative mood, both Major and Middle
must be distributed, and if both premisses are particular this cannot
be.
_Canon VII._ If one Premiss is particular the conclusion is
particular.
This canon is sometimes combined with what we have given as Canon V.,
in a single rule: "The conclusion follows the weaker premiss".
It can most compendiously be demonstrated with the help of the
preceding canons.
Suppose both premisses affirmative, then, if one is particular, only
one term can be distributed in the premisses, namely, the subject
of the Universal affirmative premiss. By Canon II., this must be the
Middle, and the Minor, being undistributed in the Premisses, cannot
be distributed in the conclusion. That is, the conclusion cannot be
Universal--must be particular.
Suppose one Premiss negative, the other affirmative. One premiss being
negative, the conclusion must be negative, and P must be distributed
in the conclusion. Before, then, the conclusion can be universal, all
three terms, S, M, and P, must, by Canons II. and III., be distributed
in the premisses. But whatever the Figure of the premisses, only two
terms can be distributed. For if one of the Premisses be O, the other
must
|