FREE BOOKS

Author's List




PREV.   NEXT  
|<   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229  
230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   >>   >|  
ntain less than 1 per cent of the solid dispersed through the liquid. In fact, extreme dilution is one of the necessary conditions for suspensoid-formation. Emulsoids are much more easily produced than are suspensoids. The property of forming an emulsoid seems to be much more definitely a characteristic of the substance in question than does the formation of sols from solids which, under other conditions, may form true solutions. This difference may be due to the fact that the liquids which easily form emulsoids (usually those of organic origin) have very large molecules, so that the transfer from molecular to colloidal condition involves much less change in such cases than it does in the case of solid (inorganic) substances of relatively low molecular weight. This view of the matter is further borne out by the fact that solids which have very large molecules (generally of organic origin) take on the colloidal form much more readily than do those of small molecular size. At the same time, a given liquid may form a true emulsoid when introduced into one other liquid and a true solution when introduced into another. Thus, soaps form emulsoids with water (true hydrosols); but dissolve in alcohol to true solutions, in which they affect the osmotic pressure, the boiling point of the liquid, etc., in exactly the same way that the dissolving of other crystalloids in water affects the properties of true aqueous solutions. Again, ordinary "tannin," when dissolved in water, produces a sol, which froths easily, is non-diffusible, etc.; but when dissolved in glacial acetic acid, it produces a true solution. The concentration of the disperse phase may be much greater in the case of emulsoids than it can be in suspensoids. This is probably because the dispersed particles do not carry so large an electric charge and are not in such violent motion. GEL-FORMATION The one property which most sharply distinguishes sols from true solutions is their ability to "set" into a jelly-like, or gelatinous semi-solid, mass, known as a "gel," without any change in chemical composition, or proportions, of the two components of the system. In the gel, the two components are still present in the same proportions as in the original sol; but the mixture becomes semi-solid instead of fluid in character. Thus, an agar-agar sol containing 98 per cent of water sets into a stiff gel; while many other gels which contai
PREV.   NEXT  
|<   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229  
230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   >>   >|  



Top keywords:

liquid

 

solutions

 

emulsoids

 

easily

 
molecular
 

proportions

 

molecules

 

organic

 
solution
 

dissolved


produces
 
introduced
 

change

 

colloidal

 

origin

 

suspensoids

 

property

 

conditions

 

dispersed

 

emulsoid


formation
 

solids

 

components

 

tannin

 

particles

 

electric

 
greater
 
diffusible
 

froths

 
contai

glacial

 

acetic

 
disperse
 

concentration

 

system

 
charge
 
composition
 

character

 

present

 

gelatinous


original

 

mixture

 

motion

 
violent
 

chemical

 
FORMATION
 

ability

 

distinguishes

 

sharply

 
transfer