FREE BOOKS

Author's List




PREV.   NEXT  
|<   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228  
229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   >>   >|  
culation, the gold particles do not settle, even at the slow rate as calculated above. They remain uniformly distributed throughout the liquid for an indefinite period or time. The reason for this phenomenon undoubtedly lies in the fact that these minute particles carry an electric charge, which, is of the same sign for all of the particles and results in a repellent action which keeps the particles in constant motion. This constant motion may easily be conceived to keep the particles uniformly distributed throughout the liquid, just as constant shaking would keep those of a mechanical suspension uniformly distributed through the mixture. The sign of the electric charge on the particles of a sol may be either negative or positive, depending upon the chemical nature and dielectric constants of the two phases of the system. The proportion of the total electric charge of the system which is of the opposite sign to that borne by the dispersed particles is, of course, borne by the liquid which constitutes the other phase. The origin of this electric charge on the colloidal particles is, as yet, not known with certainty; but it seems probable that it is due to a partial ionization of these small particles, similar to, but not so complete as, that which takes place when compounds which are soluble go into true solution in water, or other solvents which bring about the dissociation of dissolved substances. The conditions necessary to bring a solid substance into a colloidal mixture with some liquid, or, in other words, to produce a suspensoid sol, require that the proportion of liquid to solid shall be large and some means of disintegrating the material which is to be dispersed into very fine particles. Many common chemical reactions, if carried out in very dilute solutions, result in the production of sols, especially if a small amount of some emulsoid is present in the reacting mixture; sols produced in this way are very stable, and the emulsoid which is used in stabilizing the sol is known as a "protective colloid." Direct methods of disintegration; such as reduction by chemical agents, discharge of a strong electrical current through the substance which is to be dispersed while it is submerged in the liquid, alternate treatment of finely ground material with alkali and acid so as to frequently change the electric charge, etc., are utilized for bringing inorganic compounds into the colloidal state. Suspensoids usually co
PREV.   NEXT  
|<   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228  
229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   >>   >|  



Top keywords:

particles

 

liquid

 

electric

 

charge

 
mixture
 

distributed

 

dispersed

 

uniformly

 
colloidal
 

constant


chemical
 
material
 

motion

 

compounds

 

system

 

proportion

 

substance

 

emulsoid

 

carried

 

common


reactions
 

conditions

 

substances

 

dissolved

 

dissociation

 

produce

 
suspensoid
 
disintegrating
 

require

 
current

submerged

 

alternate

 
electrical
 

strong

 

Suspensoids

 
discharge
 
treatment
 

finely

 

utilized

 

bringing


inorganic

 

change

 

frequently

 
ground
 

alkali

 
agents
 

reduction

 

present

 

reacting

 
produced