FREE BOOKS

Author's List




PREV.   NEXT  
|<   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239  
240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   >>   >|  
he energy to overcome the chemical resistance to the molecular rearrangement which constitutes the reaction itself. Evidence in favor of the accuracy of this view of the nature of the catalytic action of colloidal substances is afforded by the facts that catalysts accelerate the velocity of reversible reactions in either direction and that they do not change the point of final equilibrium, in any case; that is, they do not affect the nature or direction of the reaction, but only accelerate a chemical change which would otherwise take place more slowly because of the stability (or chemical resistance) of the molecules involved, or their inability to come quickly into intimate molecular contact. These facts and principles have been clearly established in many studies of the nature of enzyme action (enzymes are typical colloidal catalysts) and probably apply equally well to the action of other types of colloidal catalysts. On the other hand, the catalytic action of certain inorganic and non-colloidal substances, such as the action of acids in accelerating the hydrolysis of carbohydrates, etc., may be conceived to be due to chemical influences upon the internal molecular resistance, which are similar in their effects, but entirely different in their mechanism, from the physical effects of the surface boundary phenomena of the colloidal catalysts. INDUSTRIAL APPLICATIONS OF COLLOIDAL PHENOMENA Large numbers of industrial processes are based upon colloidal phenomena. Many of these processes were known and practiced long before the nature of the phenomenon itself was understood. But with the coming of the knowledge of the nature, causes, and possibilities of the control, of the colloidal condition of the materials involved, immense improvements in the economy of the process, or the quality of the end-products, have been worked out, in many cases. Many volumes of treatises concerning the industrial applications of colloidal phenomena have been written. Any discussion of these would be out of place here; but the following list of examples will serve to illustrate the immense importance of these matters both in industry and to the needs of everyday life: the tanning of leather; the dyeing of fabrics; vulcanizing rubber; mercerizing cotton; sizing textile fabrics; manufacture of mucilages and glues; manufacture of hardened casein goods; manufacture of celluloid; production of colloidal graphite for lubrication;
PREV.   NEXT  
|<   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239  
240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   >>   >|  



Top keywords:

colloidal

 

nature

 

action

 

chemical

 
catalysts
 

manufacture

 

phenomena

 

resistance

 
molecular
 

change


fabrics
 
involved
 

immense

 

direction

 

processes

 

effects

 

substances

 

catalytic

 

industrial

 

reaction


accelerate
 

economy

 

improvements

 

products

 

worked

 

numbers

 
materials
 
quality
 

process

 
phenomenon

understood

 

practiced

 
possibilities
 

control

 

knowledge

 
PHENOMENA
 
coming
 

condition

 

importance

 

mercerizing


cotton

 

sizing

 

textile

 
rubber
 

vulcanizing

 
tanning
 

leather

 

dyeing

 

mucilages

 
graphite