FREE BOOKS

Author's List




PREV.   NEXT  
|<   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55  
56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   >>   >|  
the igneous rocks. The following table gives the percentages of the chief chemical constituents: [1] [1] F. W. Clarke: _A Preliminary Study of Chemical Denudation_, p. 13 42 Igneous. Sedimentary. Silica (SiO2) - 59.99 58.51 Alumina (Al2O3) - 15.04 13.07 Ferric oxide (F2O3) - 2.59 3.40 Ferrous oxide (FeO) - 3.34 2.00 Magnesia (MgO) - 3.89 2.52 Lime (CaO) - 4.81 5.42 Soda (Na2O) - 3.41 1.12 Potash (K2O) - 2.95 2.80 Water (H2O) - 1.92 4.28 Carbon dioxide (CO2) - -- 4.93 Minor constituents - 2.06 1.95 100.00 100.00 In the derivation of the sediments from the igneous rocks there is a loss by solution of about 33 per cent; _i.e._ 100 tons of igneous rock yields rather less than 70 tons of sedimentary rock. This involves a concentration in the sediments of the more insoluble constituents. To this rule the lime-content appears to be an exception. It is not so in reality. Its high value in the sediments is due to its restoration from the ocean to the land. The magnesia and potash are, also, largely restored from the ocean; the former in dolomites and magnesian limestones; the latter in glauconite sands. The iron of the sediments shows increased oxidation. The most notable difference in the two analyses appears, however, in the soda percentages. This falls from 3.41 in the igneous rock to 1.12 in the average sediment. Indeed, this 43 deficiency of soda in sedimentary rocks is so characteristic of secondary rocks that it may with some safety be applied to discriminate between the two classes of substances in cases where petrological distinctions of other kinds break down. To what is this so marked deficiency of soda to be ascribed? It is a result of the extreme solubility of the salts of sodium in water. This has not only rendered its deposition by evaporation a relatively rare and unimportant incident of geological history, but also has protected it from abstraction from the ocean by organic agencies. The element sodium has, in fact, accumulated in the ocean during the whole of geological time. We can use the facts associated with the accumulation of sodium salts in the ocean as a means of obtaining addi
PREV.   NEXT  
|<   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55  
56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   >>   >|  



Top keywords:

igneous

 

sediments

 

sodium

 

constituents

 

sedimentary

 

percentages

 

appears

 

geological

 
deficiency
 

sediment


Indeed

 

secondary

 

characteristic

 

limestones

 

glauconite

 

magnesian

 

dolomites

 
largely
 

restored

 

analyses


difference
 

notable

 

increased

 

oxidation

 

average

 

agencies

 

organic

 

element

 

accumulated

 

abstraction


protected

 

unimportant

 

incident

 
history
 

accumulation

 
obtaining
 

evaporation

 

petrological

 

distinctions

 

substances


classes

 
safety
 
applied
 
discriminate
 

solubility

 

rendered

 
deposition
 

extreme

 

result

 

marked