FREE BOOKS

Author's List




PREV.   NEXT  
|<   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134  
135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   >>   >|  
lowed some six weeks later, or on July 13, 1836. While it thus appears that Ericsson had been studying the problem since 1833 or earlier, according to his own statements, there is no evidence that Smith's attention was drawn to the matter earlier than 1835. Delay on Ericsson's part in the matter of patent gives the earlier date to Smith. The mere date of a patent, however, is of small moment for our present purposes. It must be admitted that the modern form of screw-propeller is quite unlike either of these original forms, although they all involve of course the same fundamental principles. Ericsson's propeller may properly be called an engineering success, built on sound principles, but improved and largely modified by the results of later experience and research. Smith's propeller, while capable of propelling a boat, was the design of an amateur rather than of an engineer, and in comparison with Ericsson's seemed to show a somewhat less accurate appreciation of the underlying principles upon which the propeller operates. In the present case, as we have noted above, the question is not so much one of invention as of influence in introduction, adaptation, and improvement. The screw-propeller was already known, but had not been introduced into and made a part of actual engineering practice. Services in this direction are all that can be claimed for any of those concerned with the question during the third decade of the Nineteenth Century. From this point of view we must give to Ericsson large credit. He had the courage of his convictions, and did not allow his work in this direction to lapse for lack of effort on his part to secure its introduction into the practice of the day. Thus, in 1837, the "Francis B. Ogden" was built for the special purpose of testing the power of the screw-propeller, and was operated on the Thames for the benefit of the British Admiralty and many others. Shortly after this, and largely through the influence of Capt. Robert F. Stockton of the American Navy and Francis B. Ogden, the American Consul at Liverpool, Ericsson began to consider a visit to the United States for the purpose of building, under Stockton's auspices, a vessel for the United States Navy. While these negotiations were under way, in 1838, he built for Captain Stockton a screw-steamer named the "Robert F. Stockton," the trials of which attracted much attention from the public at large and from engineers of the time. At about th
PREV.   NEXT  
|<   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134  
135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   >>   >|  



Top keywords:

propeller

 

Ericsson

 

Stockton

 

principles

 

earlier

 

American

 

present

 
practice
 

question

 

engineering


introduction
 

purpose

 

Robert

 

influence

 
attention
 
matter
 

Francis

 

patent

 

largely

 

States


United

 

direction

 

convictions

 

secure

 
effort
 

concerned

 

claimed

 
Services
 

decade

 

credit


Nineteenth

 

Century

 

courage

 

Captain

 

negotiations

 

building

 

auspices

 

vessel

 
steamer
 

engineers


trials

 

attracted

 

public

 

operated

 

Thames

 

benefit

 

British

 

testing

 
special
 

Admiralty