FREE BOOKS

Author's List




PREV.   NEXT  
|<   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65  
66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   >>   >|  
Newton's laws[14] and resists movement. It is that resistance or reaction which makes flight possible. Flight is secured by driving through the air a surface[15] inclined upwards and towards the direction of motion. [Illustration] S = Side view of surface. M = Direction of motion. CHORD.--The Chord is, for practical purposes, taken to be a straight line from the leading edge of the surface to its trailing edge. N = A line through the surface starting from its trailing edge. The position of this line, which I call the _Neutral Lift Line_, is found by means of wind-tunnel research, and it varies with differences in the camber (curvature) of surfaces. In order to secure flight, the inclination of the surface must be such that the neutral lift line makes an angle with and _above_ the line of motion. If it is coincident with M, there is no lift. If it makes an angle with M and _below_ it, then there is a pressure tending to force the surface down. I = Angle of Incidence. This angle is generally defined as the angle the chord makes with the direction of motion, but that is a bad definition, as it leads to misconception. The angle of incidence is best described as the angle the neutral lift line makes with the direction of motion relative to the air. You will, however, find that in nearly all rigging specifications the angle of incidence is taken to mean the angle the chord makes with a line parallel to the propeller thrust. This is necessary from the point of view of the practical mechanic who has to rig the aeroplane, for he could not find the neutral lift line, whereas he can easily find the chord. Again, he would certainly be in doubt as to "the direction of motion relative to the air," whereas he can easily find a line parallel to the propeller thrust. It is a pity, however, that these practical considerations have resulted in a bad definition of the angle of incidence becoming prevalent, a consequence of which has been the widespread fallacy that flight may be secured with a negative inclination of the surface. Flight may conceivably be secured with a negative angle of chord, but never with a negative inclination of the surface, if, as seems reasonable, we regard the surface from the point of view of the neutral lift line. All this is only applicable to cambered surfaces. In the case of flat surfaces the neutral lift line coincides with the chord and the definition I have criticized adversely is then appli
PREV.   NEXT  
|<   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65  
66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   >>   >|  



Top keywords:

surface

 
motion
 
neutral
 

direction

 
inclination
 
practical
 
incidence
 

flight

 

negative

 

definition


surfaces
 

secured

 

relative

 

trailing

 
thrust
 
propeller
 

easily

 

Flight

 

parallel

 
aeroplane

rigging
 

mechanic

 

specifications

 

resulted

 
regard
 

reasonable

 

applicable

 
cambered
 

adversely

 
criticized

coincides
 

conceivably

 

considerations

 

widespread

 

fallacy

 
consequence
 

prevalent

 

leading

 

straight

 
purposes

Neutral

 

starting

 

position

 

Direction

 
movement
 

driving

 

reaction

 
resistance
 

inclined

 

upwards