FREE BOOKS

Author's List




PREV.   NEXT  
|<   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68  
69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>   >|  
to the flight speed. [Illustration] _Head-resistance_ is a term often applied to passive drift, but it is apt to convey a wrong impression, as the drift is not nearly so much the result of the head or forward part of struts, wires, etc., as it is of the rarefied area behind. Above is illustrated the flow of air round two objects moving in the direction of the arrow M. In the case of A, you will note that the rarefied area DD is of very considerable extent; whereas in the case of B, the air flows round it in such a way as to meet very closely to the rear of the object, thus _decreasing_ DD. The greater the rarefied area DD, then, the less the density, and, consequently, the less the pressure of air upon the rear of the object. The less such pressure, then, the better is head-resistance D able to get its work in, and the more thrust will be required to overcome it. The "fineness" of the stream-line shape, _i.e._, the proportion of length to width, is determined by the velocity--the greater the velocity, the greater the fineness. The best degree of fineness for any given velocity is found by means of wind-tunnel research. The practical application of all this is, from a rigging point of view, the importance of adjusting all stream-line parts to be dead-on in the line of flight, but more of that later on. 2. _Angle of Incidence_.--The most efficient angle of incidence varies with the thrust at the disposal of the designer, the weight to be carried, and the climb-velocity ratio desired. The best angles of incidence for these varying factors are found by means of wind-tunnel research and practical trial and error. Generally speaking, the greater the velocity the smaller should be the angle of incidence, in order to preserve a clean, stream-line shape of rarefied area and freedom from eddies. Should the angle be too great for the velocity, then the rarefied area over the top of the surface becomes of irregular shape with attendant turbulent eddies. Such eddies possess no lift value, and since it has taken power to produce them, they represent drift and adversely affect the lift-drift ratio. Also, too great an angle for the velocity will result in the underside of the surface tending to compress the air against which it is driven rather than accelerate it _downwards_, and that will tend to produce drift rather than the _upwards_ reaction, or lift. From a rigging point of view, one must presume that every
PREV.   NEXT  
|<   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68  
69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>   >|  



Top keywords:

velocity

 

rarefied

 

greater

 

incidence

 

eddies

 
fineness
 

stream

 

resistance

 

tunnel

 

research


object
 

pressure

 

thrust

 

practical

 

surface

 

flight

 

produce

 
rigging
 

result

 

preserve


irregular

 

freedom

 

Should

 

smaller

 

Generally

 

illustrated

 
desired
 
carried
 

weight

 
disposal

designer

 

angles

 

attendant

 
varying
 

factors

 

speaking

 

struts

 

accelerate

 
driven
 

tending


compress

 

presume

 

upwards

 

reaction

 

underside

 

forward

 
possess
 
adversely
 

affect

 

represent