FREE BOOKS

Author's List




PREV.   NEXT  
|<   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100  
101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   >>   >|  
tion of vagrant routes in general. There are however two simple sets of routes which are of vital importance. One is a set of momental routes and the other of vagrant routes. Both sets can be classed together as straight routes. We proceed to define them without any reference to the definitions of volumes and surfaces. The two types of straight routes will be called rectilinear routes and stations. Rectilinear routes are momental routes and stations are vagrant routes. Rectilinear routes are routes which in a sense lie in rects. Any two event-particles on a rect define the set of event-particles which lie between them on that rect. Let the satisfaction of the condition {sigma} by an abstractive set mean that the two given event-particles and the event-particles lying between them on the rect all lie in every event belonging to the abstractive set. The group of {sigma}-primes, where {sigma} has this meaning, form an abstractive element. Such abstractive elements are rectilinear routes. They are the segments of instantaneous straight lines which are the ideals of exact perception. Our actual perception, however exact, will be the perception of a small event sufficiently far down one of the abstractive sets of the abstractive element. A station is a vagrant route and no moment can intersect any station in more than one event-particle. Thus a station carries with it a comparison of the positions in their respective moments of the event-particles covered by it. Rects arise from the intersection of moments. But as yet no properties of events have been mentioned by which any analogous vagrant loci can be found out. The general problem for our investigation is to determine a method of comparison of position in one instantaneous space with positions in other instantaneous spaces. We may limit ourselves to the spaces of the parallel moments of one time-system. How are positions in these various spaces to be compared? In other words, What do we mean by motion? It is the fundamental question to be asked of any theory of relative space, and like many other fundamental questions it is apt to be left unanswered. It is not an answer to reply, that we all know what we mean by motion. Of course we do, so far as sense-awareness is concerned. I am asking that your theory of space should provide nature with something to be observed. You have not settled the question by bringing forward a theory according to which there is nothing to be
PREV.   NEXT  
|<   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100  
101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   >>   >|  



Top keywords:

routes

 

abstractive

 

vagrant

 

particles

 
positions
 

moments

 

spaces

 
theory
 

instantaneous

 
perception

station

 

straight

 
momental
 

motion

 

question

 
fundamental
 

element

 
general
 

Rectilinear

 

stations


rectilinear

 

comparison

 

define

 
determine
 

method

 

system

 

investigation

 

problem

 

compared

 

position


parallel

 

unanswered

 

provide

 

nature

 

observed

 

forward

 
bringing
 
settled
 
concerned
 

awareness


questions
 

relative

 

answer

 

carries

 

condition

 

satisfaction

 

belonging

 

meaning

 

primes

 

simple