FREE BOOKS

Author's List




PREV.   NEXT  
|<   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106  
107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   >>   >|  
of events. By beginning with a duration and ending with it, I mean (i) that the event is part of the duration, and (ii) that both the initial and final boundary moments of the duration cover some event-particles on the boundary of the event. Every event which is cogredient with a duration extends throughout that duration. It is not true that all the parts of an event cogredient with a duration are also cogredient with the duration. The relation of cogredience may fail in either of two ways. One reason for failure may be that the part does not extend throughout the duration. In this case the part may be cogredient with another duration which is part of the given duration, though it is not cogredient with the given duration itself. Such a part would be cogredient if its existence were sufficiently prolonged in that time-system. The other reason for failure arises from the four-dimensional extension of events so that there is no determinate route of transition of events in linear series. For example, the tunnel of a tube railway is an event at rest in a certain time-system, that is to say, it is cogredient with a certain duration. A train travelling in it is part of that tunnel, but is not itself at rest. If an event e be cogredient with a duration d, and d' be any duration which is part of d. Then d' belongs to the same time-system as d. Also d' intersects e in an event e' which is part of e and is cogredient with d'. Let P be any event-particle lying in a given duration d. Consider the aggregate of events in which P lies and which are also cogredient with d. Each of these events occupies its own aggregate of event-particles. These aggregates will have a common portion, namely the class of event-particle lying in all of them. This class of event-particles is what I call the 'station' of the event-particle P in the duration d. This is the station in the character of a locus. A station can also be defined in the character of an abstractive element. Let the property {sigma} be the name of the property which an abstractive set possesses when (i) each of its events is cogredient with the duration d and (ii) the event-particle P lies in each of its events. Then the group of {sigma}-primes, where {sigma} has this meaning, is an abstractive element and is the station of P in d as an abstractive element. The locus of event-particles covered by the station of P in d as an abstractive element is the station of P in d as a l
PREV.   NEXT  
|<   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106  
107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   >>   >|  



Top keywords:

duration

 

cogredient

 

events

 

station

 
abstractive
 

particle

 

particles

 
element
 

system


tunnel
 

failure

 

aggregate

 
character
 

property

 

boundary

 
reason
 

intersects

 
belongs

covered

 

meaning

 

primes

 

defined

 

portion

 
common
 

travelling

 

Consider

 

occupies


aggregates

 

possesses

 

cogredience

 

relation

 

extend

 

extends

 

ending

 

beginning

 

initial


moments
 
transition
 
determinate
 

linear

 
series
 

railway

 

extension

 

existence

 

sufficiently


prolonged

 

dimensional

 

arises