FREE BOOKS

Author's List




PREV.   NEXT  
|<   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142  
143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   >>   >|  
eing more rapid than the other, when the latter appears to be moving in a contrary direction." In continuation of these experiences, he speaks of an occasion when, speeding through the air at the rate of an ordinary express train, he was drawn towards a tempest by a species of attraction. The French aeronaut's estimate of what constitutes a terrific rate of fall differs somewhat from that of others whose testimony we have been recording. In one descent, falling (without reaching earth, however) a distance of 2,130 feet in two minutes, he describes the earth rising up with frightful rapidity, though, as will be observed, this is not nearly half the speed at which either Mr. Glaisher or Albert Smith and his companions were precipitated on to bare ground. Very many cases which we have cited go to show that the knowledge of the great elasticity of a well-made wicker car may rob a fall otherwise alarming of its terrors, while the practical certainty that a balloon descending headlong will form itself into a natural parachute, if properly managed, reduces enormously the risk attending any mere impact with earth. It will be allowed by all experienced aeronauts that far worse chances lie in some awkward alighting ground, or in the dragging against dangerous obstacles after the balloon has fallen. Many of M. Flammarion's experiments are remarkable for their simplicity. Indeed, in some cases he would seem to have applied himself to making trials the result of which could not have been seriously questioned. The following, quoting from Dr. Phipson's translation, will serve as an example:-- "Another mechanical experiment was made in the evening, and renewed next day. I wished to verify Galileo's principle of the independence of simultaneous motions. According to this principle, a body which is allowed to fall from another body in motion participates in the motion of the latter; thus, if we drop a marble from the masthead of a ship, it preserves during its fall the rate of motion of the vessel, and falls at the foot of the mast as if the ship were still. Now, if a body falls from a balloon, does it also follow the motion of the latter, or does it fall directly to the earth in a line which is perpendicular to the point at which we let it fall? In the first case its fall would be described by an oblique line. The latter was found to be the fact, as we proved by letting a bottle fall. During its descent it partakes of the balloon'
PREV.   NEXT  
|<   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142  
143   144   145   146   147   148   149   150   151   152   153   154   155   156   157   158   159   160   161   162   163   164   165   166   167   >>   >|  



Top keywords:
balloon
 

motion

 

ground

 
principle
 

allowed

 

descent

 

applied

 

questioned

 

impact

 

making


trials

 
result
 

remarkable

 
chances
 
fallen
 

obstacles

 

dangerous

 

alighting

 

dragging

 

quoting


experienced

 

awkward

 

simplicity

 

aeronauts

 

Flammarion

 
experiments
 

Indeed

 

wished

 

follow

 

directly


perpendicular

 

preserves

 
vessel
 

letting

 

proved

 

bottle

 

During

 

partakes

 

oblique

 

masthead


marble
 
evening
 

experiment

 

renewed

 

mechanical

 
Another
 

Phipson

 
translation
 
participates
 

According