FREE BOOKS

Author's List




PREV.   NEXT  
|<   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179  
180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   >>   >|  
d all the wheels were running on the upper track, and revolving in the opposite direction from those on the lower track. However, after running about 1,000 feet, an axle tree doubled up, and immediately afterwards the upper track broke away, and the machine, becoming liberated, floated in the air, "giving those on board a sensation of being in a boat." The experiment proved conclusively to the inventor that a machine could be made on a large scale, in which the lifting effect should be considerably greater than the weight of the machine, and this, too, when a steam engine was the motor. When, therefore, in the years shortly following, the steam engine was for the purposes of aerial locomotion superseded by the lighter and more suitable petrol engine, the construction of a navigable air ship became vastly more practicable. Still, in Sir H. Maxim's opinion, lately expressed, "those who seek to navigate the air by machines lighter than the air have come, practically, to the end of their tether," while, on the other hand, "those who seek to navigate the air with machines heavier than the air have not even made a start as yet, and the possibilities before them are very great indeed." As to the assertion that the aerial navigators last mentioned "have not even made a start as yet," we can only say that Sir H. Maxim speaks with far too much modesty. His own colossal labours in the direction of that mode of aerial flight, which he considers to be alone feasible, are of the first importance and value, and, as far as they have gone, exhaustive. Had his experiments been simply confined to his classical investigations of the proper form of the screw propeller his name would still have been handed down as a true pioneer in aeronautics. His work, however, covers far wider ground, and he has, in a variety of ways, furnished practical and reliable data, which must always be an indispensable guide to every future worker in the same field. Professor Langley, in attacking the same problem, first studied the principle and behaviour of a well-known toy--the model invented by Penaud, which, driven by the tension of india-rubber, sustains itself in the air for a few seconds. He constructed over thirty modifications of this model, and spent many months in trying from these to as certain what he terms the "laws of balancing leading to horizontal flight." His best endeavours at first, however, showed that he needed three or four feet of su
PREV.   NEXT  
|<   155   156   157   158   159   160   161   162   163   164   165   166   167   168   169   170   171   172   173   174   175   176   177   178   179  
180   181   182   183   184   185   186   187   188   189   190   191   192   193   194   195   196   197   198   199   200   201   202   203   204   >>   >|  



Top keywords:

machine

 

engine

 

aerial

 

navigate

 

lighter

 

machines

 

direction

 

flight

 
running
 

ground


propeller
 

importance

 

practical

 
furnished
 

feasible

 
variety
 
exhaustive
 

aeronautics

 

investigations

 

pioneer


proper

 

classical

 
confined
 

experiments

 
handed
 

simply

 

covers

 

Langley

 
months
 

modifications


seconds

 

constructed

 

thirty

 

needed

 

showed

 

leading

 

balancing

 

horizontal

 
endeavours
 
worker

Professor

 

considers

 

attacking

 

future

 

indispensable

 

problem

 

studied

 

tension

 

driven

 

rubber