FREE BOOKS

Author's List




PREV.   NEXT  
|<   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91  
92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   >>   >|  
First of all comes the great cost. Secondly, since the lenses are held in position merely round their rims, they will bend by their weight in the centres if they are made much larger. On the other hand, attempts to obviate this, by making the lenses thicker, would cause a decrease in the amount of light let through. But perhaps the greatest stumbling-block to the construction of larger telescopes is the fact that the unsteadiness of the air will be increasingly magnified. And further, the larger the tubes become, the more difficult will it be to keep the air within them at one constant temperature throughout their lengths. It would, indeed, seem as if telescopes are not destined greatly to increase in size, but that the means of observation will break out in some new direction, as it has already done in the case of photography and the spectroscope. The direct use of the eye is gradually giving place to indirect methods. We are, in fact, now _feeling_ rather than seeing our way about the universe. Up to the present, for instance, we have not the slightest proof that life exists elsewhere than upon our earth. But who shall say that the twentieth century has not that in store for us, by which the presence of life in other orbs may be perceived through some form of vibration transmitted across illimitable space? There is no use speaking of the impossible or the inconceivable. After the extraordinary revelations of the spectroscope--nay, after the astounding discovery of Roentgen--the word impossible should be cast aside, and inconceivability cease to be regarded as any criterion. [8] The principle upon which the telescope is based appears to have been known _theoretically_ for a long time previous to this. The monk Roger Bacon, who lived in the thirteenth century, describes it very clearly; and several writers of the sixteenth century have also dealt with the idea. Even Lippershey's claims to a practical solution of the question were hotly contested at the time by two of his own countrymen, _i.e._ a certain Jacob Metius, and another spectacle-maker of Middleburgh, named Jansen. CHAPTER XI SPECTRUM ANALYSIS If white light (that of the sun, for instance) be passed through a glass prism, namely, a piece of glass of triangular shape, it will issue from it in rainbow-tinted colours. It is a common experience with any of us to notice this when the sunlight shines through cut-glass, as in the pendant of a c
PREV.   NEXT  
|<   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91  
92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   >>   >|  



Top keywords:

larger

 

century

 
instance
 

lenses

 

impossible

 

spectroscope

 

telescopes

 

theoretically

 

previous

 
writers

sixteenth

 
describes
 
thirteenth
 
regarded
 
revelations
 

astounding

 

discovery

 

extraordinary

 

speaking

 

inconceivable


Roentgen

 

principle

 

telescope

 

criterion

 

inconceivability

 

appears

 

claims

 

triangular

 
passed
 

ANALYSIS


SPECTRUM

 

shines

 

sunlight

 

pendant

 
notice
 
tinted
 

rainbow

 
colours
 
common
 

experience


CHAPTER
 
question
 

contested

 

solution

 

practical

 

Lippershey

 

spectacle

 

Middleburgh

 

Jansen

 

Metius