FREE BOOKS

Author's List




PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   >>   >|  
reason why high tide is usually about twenty-five minutes later each time. The moon is, however, not the sole cause of the tides, but the sun, as we have said, has a part in the matter also. When it is new moon the gravitational attractions of both sun and moon are clearly acting together from precisely the same direction, and, therefore, the tide will be pulled up higher than at other times. At full moon, too, the same thing happens; for, although the bodies are now acting from opposite directions, they do not neutralise each other's pulls as one might imagine, since the sun, in the same manner as the moon, produces a tide both under it and also at the opposite side of the earth. Thus both these tides are actually increased in height. The exceptionally high tides which we experience at new and full moons are known as _Spring Tides_, in contradistinction to the minimum high tides, which are known as _Neap Tides_. The ancients appear to have had some idea of the cause of the tides. It is said that as early as 1000 B.C. the Chinese noticed that the moon exerted an influence upon the waters of the sea. The Greeks and Romans, too, had noticed the same thing; and Caesar tells us that when he was embarking his troops for Britain the tide was high _because_ the moon was full. Pliny went even further than this, in recognising a similar connection between the waters and the sun. From casual observation one is inclined to suppose that the high tide always rises many feet. But that this is not the case is evidenced by the fact that the tides in the midst of the great oceans are only from three to four feet high. However, in the seas and straits around our Isles, for instance, the tides rise very many feet indeed, but this is merely owing to the extra heaping up which the large volumes of water undergo in forcing their passage through narrow channels. As the earth, in rotating, is continually passing through these tide-areas, one might expect that the friction thus set up would tend to slow down the rotation itself. Such a slowing down, or "tidal drag," as it is called, is indeed continually going on; but the effects produced are so exceedingly minute that it will take many millions of years to make the rotation appreciably slower, and so to lengthen the day. Recently it has been proved that the axis of the earth is subject to a very small displacement, or rather, "wobbling," in the course of a period of somewhat over a
PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   >>   >|  



Top keywords:

noticed

 

rotation

 

waters

 

continually

 

opposite

 

acting

 

displacement

 

instance

 
suppose
 

volumes


undergo
 

inclined

 

wobbling

 
heaping
 

oceans

 
evidenced
 
straits
 

subject

 

However

 

period


proved

 

lengthen

 
called
 

observation

 
slowing
 

slower

 

millions

 

minute

 
produced
 

appreciably


effects

 

Recently

 

channels

 

rotating

 

narrow

 

exceedingly

 

passage

 

passing

 
expect
 
friction

forcing

 

influence

 

directions

 

bodies

 

higher

 

neutralise

 

produces

 

manner

 

imagine

 

pulled