FREE BOOKS

Author's List




PREV.   NEXT  
|<   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120  
121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   >>   >|  
ass, the greater is this bending found to be. Since the layer of air around us becomes denser and denser towards the surface of the earth, it will readily be granted that the rays of light reaching our eyes from a celestial object, will suffer the greater bending the lower the object happens to be in the sky. Celestial objects, unless situated directly overhead, are thus not seen in their true places, and when nearest to the horizon are most out of place. The bending alluded to is upwards. Thus the sun and the moon, for instance, when we see them resting upon the horizon, are actually _entirely_ beneath it. When the sun, too, is sinking towards the horizon, the lower edge of its disc will, for the above reason, look somewhat more raised than the upper. The result is a certain appearance of flattening; which may plainly be seen by any one who watches the orb at setting. In observations to determine the exact positions of celestial objects correction has to be made for the effects of refraction, according to the apparent elevation of these objects in the sky. Such effects are least when the objects in question are directly overhead, for then the rays of light, coming from them to the eye, enter the atmosphere perpendicularly, and not at any slant. A very curious effect, due to refraction, has occasionally been observed during a total eclipse of the moon. To produce an eclipse of this kind, _the earth must, of course, lie directly between the sun and the moon_. Therefore, when we see the shadow creeping over the moon's surface, the sun should actually be well below the horizon. But when a lunar eclipse happens to come on just about sunset, the sun, although really sunk below the horizon, appears still above it through refraction, and the eclipsed moon, situated, of course, exactly opposite to it in the sky, is also lifted up above the horizon by the same cause. Pliny, writing in the first century of the Christian era, describes an eclipse of this kind, and refers to it as a "prodigy." The phenomenon is known as a "horizontal eclipse." It was, no doubt, partly owing to it that the ancients took so long to decide that an eclipse of the moon was really caused by the shadow cast by the earth. Plutarch, indeed, remarks that it was easy enough to understand that a solar eclipse was caused by the interposition of the moon, but that one could not imagine by the interposition _of what body_ the moon itself could be eclipsed.
PREV.   NEXT  
|<   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120  
121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   >>   >|  



Top keywords:

eclipse

 

horizon

 

objects

 

refraction

 

bending

 

directly

 

eclipsed

 

effects

 
greater
 

surface


shadow
 

interposition

 

object

 
celestial
 

denser

 
caused
 
overhead
 

situated

 

sunset

 

appears


observed

 

produce

 
Therefore
 

creeping

 
refers
 

imagine

 

ancients

 

partly

 
decide
 

understand


remarks

 

Plutarch

 

writing

 

opposite

 

lifted

 

century

 

Christian

 

horizontal

 
occasionally
 
phenomenon

describes

 

prodigy

 

determine

 

instance

 

resting

 

upwards

 

alluded

 

beneath

 

reason

 

sinking