FREE BOOKS

Author's List




PREV.   NEXT  
|<   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220  
221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   >>   >|  
of oxygen and hydrogen gas. If, again, upon mixing a portion of the residuum with oxygen gas, red fumes are produced, we conclude that it contains nitrous gas. These preliminary trials give some general knowledge of the properties of the gas, and nature of the mixture, but are not sufficient to determine the proportions and quantities of the several gasses of which it is composed. For this purpose all the methods of analysis must be employed; and, to direct these properly, it is of great use to have a previous approximation by the above methods. Suppose, for instance, we know that the residuum consists of oxygen and azotic gas mixed together, put a determinate quantity, 100 parts, into a graduated tube of ten or twelve lines diameter, introduce a solution of sulphuret of potash in contact with the gas, and leave them together for some days; the sulphuret absorbs the whole oxygen gas, and leaves the azotic gas pure. If it is known to contain hydrogen gas, a determinate quantity is introduced into Volta's eudiometer alongst with a known proportion of hydrogen gas; these are deflagrated together by means of the electrical spark; fresh portions of oxygen gas are successively added, till no farther deflagration takes place, and till the greatest possible diminution is produced. By this process water is formed, which is immediately absorbed by the water of the apparatus; but, if the hydrogen gas contain charcoal, carbonic acid is formed at the same time, which is not absorbed so quickly; the quantity of this is readily ascertained by assisting its absorption, by means of agitation. If the residuum contains nitrous gas, by adding oxygen gas, with which it combines into nitric acid, we can very nearly ascertain its quantity, from the diminution produced by this mixture. I confine myself to these general examples, which are sufficient to give an idea of this kind of operations; a whole volume would not serve to explain every possible case. It is necessary to become familiar with the analysis of gasses by long experience; we must even acknowledge that they mostly possess such powerful affinities to each other, that we are not always certain of having separated them completely. In these cases, we must vary our experiments in every possible point of view, add new agents to the combination, and keep out others, and continue our trials, till we are certain of the truth and exactitude of our conclusions. SECT. V. _Of the
PREV.   NEXT  
|<   196   197   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220  
221   222   223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   >>   >|  



Top keywords:
oxygen
 

quantity

 

hydrogen

 
produced
 
residuum
 
analysis
 

sulphuret

 

methods

 

azotic

 

determinate


gasses
 
formed
 

mixture

 

nitrous

 

general

 

trials

 

absorbed

 

sufficient

 

diminution

 

examples


volume
 

carbonic

 

operations

 
adding
 

combines

 
nitric
 
agitation
 

absorption

 

assisting

 

ascertained


readily

 

quickly

 
ascertain
 
confine
 

powerful

 
agents
 

experiments

 

combination

 

conclusions

 

exactitude


continue

 

completely

 
separated
 

familiar

 
experience
 
explain
 

acknowledge

 

affinities

 
charcoal
 

possess