FREE BOOKS

Author's List




PREV.   NEXT  
|<   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222  
223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   >>   >|  
mercury in the barometer descend in proportion to its elevation? or, what is the same thing, according to what law or ratio do the several strata of the atmosphere decrease in density? This question, which has exercised the ingenuity of natural philosophers during last century, is considerably elucidated by the following experiment. If we take the glass syphon ABCDE, Pl. XII. Fig. 17. shut at E, and open at A, and introduce a few drops of mercury, so as to intercept the communication of air between the leg AB and the leg BE, it is evident that the air contained in BCDE is pressed upon, in common with the whole surrounding air, by a weight or column of air equal to 28 inches of mercury. But, if we pour 28 inches of mercury into the leg AB, it is plain the air in the branch BCDE will now be pressed upon by a weight equal to twice 28 inches of mercury, or twice the weight of the atmosphere; and experience shows, that, in this case, the included air, instead of filling the tube from B to E, only occupies from C to E, or exactly one half of the space it filled before. If to this first column of mercury we add two other portions of 28 inches each, in the branch AB, the air in the branch BCDE will be pressed upon by four times the weight of the atmosphere, or four times the weight of 28 inches of mercury, and it will then only fill the space from D to E, or exactly one quarter of the space it occupied at the commencement of the experiment. From these experiments, which may be infinitely varied, has been deduced as a general law of nature, which seems applicable to all permanently elastic fluids, that they diminish in volume in proportion to the weights with which they are pressed upon; or, in other words, "_the volume of all elastic fluids is in the inverse ratio of the weight by which they are compressed_." The experiments which have been made for measuring the heights of mountains by means of the barometer, confirm the truth of these deductions; and, even supposing them in some degree inaccurate, these differences are so extremely small, that they may be reckoned as nullities in chemical experiments. When this law of the compression of elastic fluids is once well understood, it becomes easily applicable to the corrections necessary in pneumato chemical experiments upon the volume of gas, in relation to its pressure. These corrections are of two kinds, the one relative to the variations of the barometer, and the other fo
PREV.   NEXT  
|<   198   199   200   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222  
223   224   225   226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   >>   >|  



Top keywords:
mercury
 

weight

 

inches

 
experiments
 
pressed
 
volume
 

barometer

 

fluids

 

atmosphere

 

elastic


branch
 
column
 

applicable

 

chemical

 

corrections

 

experiment

 

proportion

 

general

 

pneumato

 

deduced


permanently
 

easily

 

nature

 
infinitely
 

variations

 
commencement
 
occupied
 

quarter

 

relative

 

understood


varied

 

pressure

 
relation
 
compression
 

deductions

 
supposing
 

heights

 

mountains

 

confirm

 

measuring


compressed

 

weights

 
nullities
 

diminish

 
reckoned
 
inaccurate
 

degree

 

inverse

 
differences
 

extremely