FREE BOOKS

Author's List




PREV.   NEXT  
|<   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234  
235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   >>   >|  
becomes at best very uncertain. For this species of experiment we have contrived to make the air pass through two metallic worms, or spiral tubes; one of these, through which the air passes, and becomes heated in its way to the calorimeter, is contained in a vessel full of boiling water, and the other, through which the air circulates within the calorimeter to disengage its caloric, is placed in the interior cavity, f f f f, of that machine. By means of a small thermometer placed at one end of the second worm, the temperature of the air, as it enters the calorimeter, is determined, and its temperature in getting out of the interior cavity is found by another thermometer placed at the other end of the worm. By this contrivance we are enabled to ascertain the quantity of ice melted by determinate quantities of air or gas, while losing a certain number of degrees of temperature, and, consequently, to determine their several degrees of specific caloric. The same apparatus, with some particular precautions, may be employed to ascertain the quantity of caloric disengaged by the condensation of the vapours of different liquids. The various experiments which may be made with the calorimeter do not afford absolute conclusions, but only give us the measure of relative quantities; we have therefore to fix a unit, or standard point, from whence to form a scale of the several results. The quantity of caloric necessary to melt a pound of ice has been chosen as this unit; and, as it requires a pound of water of the temperature of 60 deg. (167 deg.) to melt a pound of ice, the quantity of caloric expressed by our unit or standard point is what raises a pound of water from zero (32 deg.) to 60 deg. (167 deg.). When this unit is once determined, we have only to express the quantities of caloric disengaged from different bodies by cooling a certain number of degrees, in analogous values: The following is an easy mode of calculation for this purpose, applied to one of our earliest experiments. We took 7 lib. 11 oz. 2 gros 36 grs. of plate-iron, cut into narrow slips, and rolled up, or expressing the quantity in decimals, 7.7070319. These, being heated in a bath of boiling water to about 78 deg. (207.5 deg.), were quickly introduced into the interior cavity of the calorimeter: At the end of eleven hours, when the whole quantity of water melted from the ice had thoroughly drained off, we found that 1.109795 pounds of ice were melted. Henc
PREV.   NEXT  
|<   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233   234  
235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   >>   >|  



Top keywords:

quantity

 

caloric

 

calorimeter

 

temperature

 

cavity

 

interior

 
degrees
 
quantities
 

melted

 

disengaged


determined

 

experiments

 

thermometer

 

number

 

heated

 

standard

 

ascertain

 

boiling

 

earliest

 
purpose

applied

 

express

 

raises

 

chosen

 

requires

 

expressed

 

values

 

bodies

 
cooling
 

analogous


calculation

 

introduced

 

eleven

 

quickly

 

109795

 
pounds
 

drained

 

decimals

 

7070319

 

expressing


narrow

 
rolled
 

condensation

 

disengage

 

machine

 

circulates

 
vessel
 

contrivance

 

enabled

 
enters