FREE BOOKS

Author's List




PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  
tonnages is to calculate the volume and value of each block separately. Under the law of averages, the multiplicity of these blocks tends in proportion to their number to compensate the percentage of error which might arise in the sampling or estimating of any particular one. The shapes of these blocks, on longitudinal section, are often not regular geometrical figures. As a matter of practice, however, they can be subdivided into such figures that the total will approximate the whole with sufficient closeness for calculations of their areas. The average width of the ore in any particular block is the arithmetical mean of the width of the sample sections in it,[*] if the samples be an equal distance apart. If they are not equidistant, the average width is the sum of the areas between samples, divided by the total length sampled. The cubic foot contents of a particular block is obviously the width multiplied by the area of its longitudinal section. [Footnote *: This is not strictly true unless the sum of the widths of the two end-sections be divided by two and the result incorporated in calculating the means. In a long series that error is of little importance.] The ratio of cubic feet to tons depends on the specific gravity of the ore, its porosity, and moisture. The variability of ores throughout the mine in all these particulars renders any method of calculation simply an approximation in the end. The factors which must remain unknown necessarily lead the engineer to the provision of a margin of safety, which makes mathematical refinement and algebraic formulae ridiculous. There are in general three methods of determination of the specific volume of ores:-- _First_, by finding the true specific gravity of a sufficient number of representative specimens; this, however, would not account for the larger voids in the ore-body and in any event, to be anything like accurate, would be as expensive as sampling and is therefore of little more than academic interest. _Second_, by determining the weight of quantities broken from measured spaces. This also would require several tests from different portions of the mine, and, in examinations, is usually inconvenient and difficult. Yet it is necessary in cases of unusual materials, such as leached gossans, and it is desirable to have it done sooner or later in going mines, as a check. _Third_, by an approximation based upon a calculation from the specific graviti
PREV.   NEXT  
|<   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38  
39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   >>   >|  



Top keywords:
specific
 

sufficient

 

average

 

gravity

 

approximation

 

calculation

 
samples
 

divided

 

sections

 

longitudinal


section

 

volume

 

sampling

 

blocks

 
number
 

figures

 

larger

 

account

 

academic

 

accurate


specimens
 

calculate

 

expensive

 
finding
 
safety
 

mathematical

 

margin

 

provision

 

necessarily

 

engineer


refinement

 

algebraic

 

methods

 

determination

 

general

 

formulae

 

ridiculous

 
representative
 

quantities

 

gossans


desirable

 

leached

 
materials
 
unusual
 

sooner

 

graviti

 
difficult
 

tonnages

 
measured
 

spaces