FREE BOOKS

Author's List




PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  
als. 2. A lower horizon, still in the zone of oxidation, where the predominant feature is the deposition of metals as native, oxides, and carbonates. 3. The upper horizon of the sulphide zone, where the special feature is the enrichment due to secondary deposition as sulphides. 4. The region below these zones of secondary alteration, where the deposit is in its primary state. These zones are seldom sharply defined, nor are they always all in evidence. How far they are in evidence will depend, among other things, upon the amount and rapidity of erosion, the structure and mineralogical character of the deposit, and upon the enclosing rock. If erosion is extremely rapid, as in cold, wet climates, and rough topography, or as in the case of glaciation of the Lake copper deposits, denudation follows close on the heels of alteration, and the surface is so rapidly removed that we may have the primary ore practically at the surface. Flat, arid regions present the other extreme, for denudation is much slower, and conditions are most perfect for deep penetration of oxidizing agencies, and the consequent alteration and concentration of the metals. The migration of metals from the top of the oxidized zone leaves but a barren cap for erosion. The consequent effect of denudation that lags behind alteration is to raise slowly the concentrated metals toward the surface, and thus subject them to renewed attack and repeated migration. In this manner we can account for the enormous concentration of values in the lower oxidized and upper sulphide zones overlying very lean sulphides in depth. Some minerals are more freely soluble and more readily precipitated than others. From this cause there is in complex metal deposits a rearrangement of horizontal sequence, in addition to enrichment at certain horizons and impoverishment at others. The whole subject is one of too great complexity for adequate consideration in this discussion. No engineer is properly equipped to give judgment on extension in depth without a thorough grasp of the great principles laid down by Van Hise, Emmons, Lindgren, Weed, and others. We may, however, briefly examine some of the theoretical effects of such alteration. Zinc, iron, and lead sulphides are a common primary combination. These metals are rendered soluble from their usual primary forms by oxidizing agencies, in the order given. They reprecipitate as sulphides in the reverse sequen
PREV.   NEXT  
|<   24   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48  
49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   >>   >|  



Top keywords:
alteration
 

metals

 

sulphides

 

primary

 

erosion

 

denudation

 
surface
 

soluble

 

evidence

 

feature


concentration

 

consequent

 

agencies

 

oxidizing

 
subject
 

deposits

 

oxidized

 

enrichment

 

horizon

 

secondary


sulphide
 

migration

 

deposition

 
deposit
 
values
 

rearrangement

 

enormous

 

manner

 

account

 

complex


sequence

 

addition

 

horizontal

 

freely

 

minerals

 

horizons

 

repeated

 
readily
 

attack

 

precipitated


overlying

 

effects

 
theoretical
 
briefly
 

examine

 

common

 
combination
 

reprecipitate

 
reverse
 

sequen