FREE BOOKS

Author's List




PREV.   NEXT  
|<   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49  
50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   >>   >|  
ce. The result is the leaching of zinc and iron readily in the oxidized zone, thus differentially enriching the lead which lags behind, and a further extension of the lead horizon is provided by the early precipitation of such lead as does migrate. Therefore, the lead often predominates in the second and the upper portion of the third zone, with the zinc and iron below. Although the action of all surface waters is toward oxidation and carbonation of these metals, the carbonate development of oxidized zones is more marked when the enclosing rocks are calcareous. In copper-iron deposits, the comparatively easy decomposition and solubility and precipitation of the copper and some iron salts generally result in more extensive impoverishment of these metals near the surface, and more predominant enrichment at a lower horizon than is the case with any other metals. The barren "iron hat" at the first zone, the carbonates and oxides at the second, the enrichment with secondary copper sulphides at the top of the third, and the occurrence of secondary copper-iron sulphides below, are often most clearly defined. In the easy recognition of the secondary copper sulphides, chalcocite, bornite, etc., the engineer finds a finger-post on the road to extension in depth; and the directions upon this post are not to be disregarded. The number of copper deposits enriched from unpayability in the first zone to a profitable character in the next two, and unpayability again in the fourth, is legion. Silver occurs most abundantly in combination with either lead, copper, iron, or gold. As it resists oxidation and solution more strenuously than copper and iron, its tendency when in combination with them is to lag behind in migration. There is thus a differential enrichment of silver in the upper two zones, due to the reduction in specific gravity of the ore by the removal of associated metals. Silver does migrate somewhat, however, and as it precipitates more readily than copper, lead, zinc, or iron, its tendency when in combination with them is towards enrichment above the horizons of enrichment of these metals. When it is in combination with lead and zinc, its very ready precipitation from solution by the galena leaves it in combination more predominantly with the lead. The secondary enrichment of silver deposits at the top of the sulphide zone is sometimes a most pronounced feature, and it seems to be the explanation of the origin of man
PREV.   NEXT  
|<   25   26   27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49  
50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   >>   >|  



Top keywords:
copper
 

enrichment

 

combination

 

metals

 

secondary

 

precipitation

 
sulphides
 

deposits

 

oxidation

 

solution


tendency

 

silver

 

surface

 

oxidized

 
horizon
 

unpayability

 

extension

 

migrate

 

result

 

Silver


readily
 

number

 

disregarded

 
enriched
 
resists
 

character

 

fourth

 

legion

 

abundantly

 

profitable


occurs

 

leaves

 

predominantly

 

galena

 

sulphide

 

origin

 

explanation

 
pronounced
 

feature

 

horizons


reduction

 

differential

 
migration
 
specific
 

gravity

 

precipitates

 
removal
 

strenuously

 
carbonate
 

development