FREE BOOKS

Author's List




PREV.   NEXT  
|<   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102  
103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   >>   >|  
ricultural machinery, etc., are not turned at all but are ground from the rough. =Spherical Turning.=--Occasionally it may be necessary to turn a spherical surface in the lathe. Sketch _A_, Fig. 28, shows how a small ball-shaped end can be turned on a piece held in a chuck. The lathe carriage is adjusted so that the pin around which the compound rest swivels is directly under the center a. The bolts which hold the swivel are slightly loosened to allow the top slide to be turned, as indicated by the dotted lines; this causes the tool point to move in an arc about center _a_, and a spherical surface is turned. Light cuts must be taken as otherwise it would be difficult to turn the slide around by hand. [Illustration: Fig. 29. Spherical Turning Attachment for Engine Lathe] Sketch _B_ illustrates how a concave surface can be turned. The cross-slide is adjusted until swivel pin is in line with the lathe centers, and the carriage is moved along the bed until the horizontal distance between center _b_ of the swivel, and the face of the work, equals the desired radius of the concave surface. The turning is then done by swinging the compound rest as indicated by the dotted lines. The slide can be turned more evenly by using the tailstock center to force it around. A projecting bar is clamped across the end of the slide at _d_, to act as a lever, and a centered bar is placed between this lever and the tailstock center; then by screwing out the tailstock spindle, the slide is turned about pivot _b_. The alignment between the swivel pin and the lathe centers can be tested by taking a trial cut; if the swivel pin is too far forward, the tool will not touch the turned surface if moved past center _c_, and if the pin is too far back, the tool will cut in on the rear side. =Spherical Turning Attachments.=--When spherical turning must be done repeatedly, special attachments are sometimes used. Fig. 29 shows an attachment applied to a lathe for turning the spherical ends of ball-and-socket joints. The height or radius of the cutting tool and, consequently, the diameter of the turned ball, is regulated by adjusting screw _A_. The tool is swung around in an arc, by turning handle _B_ which revolves a worm meshing with an enclosed worm-wheel. As will be seen, the work is held in a special chuck, owing to its irregular shape. [Illustration: Fig. 30. Attachment for Turning Spherical End of Gasoline Engine Piston] Another spherical
PREV.   NEXT  
|<   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102  
103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   >>   >|  



Top keywords:

turned

 

center

 
swivel
 

surface

 

spherical

 
Turning
 

turning

 
Spherical
 
tailstock
 

dotted


Illustration
 

special

 

radius

 

concave

 

Engine

 

Attachment

 

centers

 

Sketch

 

compound

 
carriage

adjusted
 

repeatedly

 

attachments

 
attachment
 
machinery
 

taking

 

tested

 
alignment
 

forward

 

applied


Attachments
 

height

 

enclosed

 
irregular
 

Piston

 

Another

 

Gasoline

 

meshing

 

ricultural

 
cutting

spindle

 
socket
 

joints

 
diameter
 
regulated
 

handle

 
revolves
 

adjusting

 

difficult

 
shaped