FREE BOOKS

Author's List




PREV.   NEXT  
|<   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285  
286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   >>   >|  
ed, in 1886,[737] by further particulars learned with the help of rock-salt lenses and prisms, glass being impervious to very slow, as to very rapid vibrations. Traces were thus detected of solar heat distributed into bands of transmission alternating with bands of atmospheric absorption, far beyond the measurable limit of 5.3 microns. In 1894, Langley described at the Oxford Meeting of the British Association[738] his new "bolographic" researches, in which the sensitive plate was substituted for the eye in recording deflections of the galvanometer responding to variations of invisible heat. Finally, in 1901,[739] he embodied in a splendid map of the infra-red spectrum 740 absorption-lines of determinate wave-lengths, ranging from 0.76 to 5.3 microns. Their chemical origin, indeed, remains almost entirely unknown, no extensive investigations having yet been undertaken of the slower vibrations distinctive of particular substances; but there is evidence that seven of the nine great bands crossing the "new spectrum" (as Langley calls it)[740] are telluric, and subject to seasonal change. Here, then, he thought, might eventually be found a sure standing-ground for vitally important previsions of famines, droughts, and bonanza-crops. Atmospheric absorption had never before been studied with such precision as it was by Langley on Mount Whitney. Aided by simultaneous observations from Lone Pine, at the foot of the Sierra, he was able to calculate the intensity belonging to each ray before entering the earth's gaseous envelope--in other words, to construct an extra-atmospheric curve of energy in the spectrum. The result showed that the blue end suffered far more than the red, absorption varying inversely as wave-length. This property of stopping predominantly the quicker vibrations is shared, as both Vogel and Langley[741] have conclusively shown, by the solar atmosphere. The effect of this double absorption is as if two plates of reddish glass were interposed between us and the sun, the withdrawal of which would leave his orb, not only three or four times more brilliant, but in colour distinctly greenish-blue.[742] The fact of the uncovered sun being _blue_ has an important bearing upon the question of his temperature, to afford a somewhat more secure answer to which was the ultimate object of Professor Langley's persevering researches; for it is well known that as bodies grow hotter, the proportionate representation in
PREV.   NEXT  
|<   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285  
286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   >>   >|  



Top keywords:

Langley

 

absorption

 

vibrations

 

spectrum

 
microns
 

researches

 

important

 

atmospheric

 
varying
 

inversely


Whitney
 
length
 

suffered

 

simultaneous

 

stopping

 

predominantly

 

quicker

 

studied

 

property

 

precision


showed
 

result

 

belonging

 

calculate

 

construct

 

envelope

 
gaseous
 
Sierra
 

entering

 
energy

observations

 

shared

 
intensity
 

plates

 

bearing

 
question
 
temperature
 

afford

 

uncovered

 

distinctly


colour

 

greenish

 

secure

 
bodies
 

hotter

 
proportionate
 

representation

 

ultimate

 

answer

 
object