FREE BOOKS

Author's List




PREV.   NEXT  
|<   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334  
335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   >>   >|  
h that fundamental part of astronomy known as "celestial mechanics" lies outside the scope of this work, and we therefore pass over in silence the immense labours of Plana, Damoiseau, Hansen, Delaunay, G. W. Hill, and Airy in reconciling the observed and calculated motions of the moon, there is one slight but significant discrepancy which is of such importance to the physical history of the solar system, that some brief mention must be made of it. Halley discovered in 1693, by examining the records of ancient eclipses, that the moon was going faster then than 2,000 years previously--so much faster, as to have got ahead of the place in the sky she would otherwise have occupied, by about two of her own diameters. It was one of Laplace's highest triumphs to have found an explanation of this puzzling fact. He showed, in 1787, that it was due to a very slow change in the ovalness of the earth's orbit, tending, during the present age of the world, to render it more nearly circular. The pull of the sun upon the moon is thereby lessened; the counter-pull of the earth gets the upper hand; and our satellite, drawn nearer to us by something less than an inch each year,[954] proportionately quickens her pace. Many thousands of years hence the process will be reversed; the terrestrial orbit will close in at the sides, the lunar orbit will open out under the growing stress of solar gravity, and our celestial chronometer will lose instead of gaining time. This is all quite true as Laplace put it; but it is not enough. Adams, the virtual discoverer of Neptune, found with surprise in 1853 that the received account of the matter was "essentially incomplete," and explained, when the requisite correction was introduced, only half the observed acceleration.[955] What was to be done with the remaining half? Here Delaunay, the eminent French mathematical astronomer, unhappily drowned at Cherbourg in 1872 by the capsizing of a pleasure-boat, came to the rescue.[956] It is obvious to anyone who considers the subject a little attentively, that the tides must act to some extent as a friction-brake upon the rotating earth. In other words, they must bring about an almost infinitely slow lengthening of the day. For the two masses of water piled up by lunar influence on the hither and farther sides of our globe, strive, as it were, to detach themselves from the unity of the terrestrial spheroid, and to follow the movements of the moon. The moon,
PREV.   NEXT  
|<   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334  
335   336   337   338   339   340   341   342   343   344   345   346   347   348   349   350   351   352   353   354   355   356   357   358   359   >>   >|  



Top keywords:

terrestrial

 

faster

 
Laplace
 

Delaunay

 

observed

 
celestial
 
essentially
 
explained
 

incomplete

 

matter


fundamental
 

surprise

 

received

 
account
 
correction
 
remaining
 
eminent
 

French

 

introduced

 
Neptune

acceleration

 

requisite

 

virtual

 

growing

 

stress

 
gravity
 

chronometer

 

astronomy

 

mathematical

 

gaining


discoverer

 

drowned

 
masses
 

influence

 

infinitely

 

lengthening

 

spheroid

 
follow
 

movements

 

detach


farther

 

strive

 

rescue

 

obvious

 

pleasure

 
capsizing
 
unhappily
 

reversed

 

Cherbourg

 

friction