FREE BOOKS

Author's List




PREV.   NEXT  
|<   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383  
384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   >>   >|  
science attempts to supplement, but scarcely ventures to supersede it. Thought has, in many directions, been profoundly modified by Mayer's and Joule's discovery, in 1842, of the equivalence between heat and motion. Its corollary was the grand idea of the "conservation of energy," now one of the cardinal principles of science. This means that, under the ordinary circumstances of observation, the old maxim _ex nihilo nihil fit_ applies to force as well as to matter. The supplies of heat, light, electricity, must be kept up, or the stream will cease to flow. The question of the maintenance of the sun's heat was thus inevitably raised; and with the question of maintenance that of origin is indissolubly connected. Dr. Julius Robert Mayer, a physician residing at Heilbronn, was the first to apply the new light to the investigation of what Sir John Herschel had termed the "great secret." He showed that if the sun were a body either simply cooling or in a state of combustion, it must long since have "gone out." Had an equal mass of coal been set alight four or five centuries after the building of the Pyramid of Cheops, and kept burning at such a rate as to supply solar light and heat during the interim, only a few cinders would now remain in lieu of our undiminished glorious orb. Mayer looked round for an alternative. He found it in the "meteoric hypothesis" of solar conservation.[1153] The importance in the economy of our system of the bodies known as falling stars was then (in 1848) beginning to be recognised. It was known that they revolved in countless swarms round the sun; that the earth daily encountered millions of them; and it was surmised that the cone of the zodiacal light represented their visible condensation towards the attractive centre. From the zodiacal light, then, Mayer derived the store needed for supporting the sun's radiations. He proved that, by the stoppage of their motion through falling into the sun, bodies would evolve from 4,600 to 9,200 times as much heat (according to their ultimate velocity) as would result from the burning of equal masses of coal, their precipitation upon the sun's surface being brought about by the resisting medium observed to affect the revolutions of Encke's comet. There was, however, a difficulty. The quantity of matter needed to keep, by the sacrifice of its movement, the hearth of our system warm and bright would be very considerable. Mayer's lowest estimate put it at 9
PREV.   NEXT  
|<   359   360   361   362   363   364   365   366   367   368   369   370   371   372   373   374   375   376   377   378   379   380   381   382   383  
384   385   386   387   388   389   390   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   >>   >|  



Top keywords:
bodies
 

falling

 
system
 

matter

 

maintenance

 

needed

 
zodiacal
 

question

 
science
 
burning

conservation

 

motion

 

swarms

 

cinders

 

revolved

 
countless
 

lowest

 

looked

 

represented

 

surmised


encountered

 

millions

 
estimate
 

considerable

 
undiminished
 

glorious

 
economy
 

hypothesis

 

importance

 
beginning

meteoric
 

alternative

 

remain

 

recognised

 

precipitation

 

surface

 

brought

 

masses

 

result

 

ultimate


velocity

 

resisting

 

quantity

 
difficulty
 
revolutions
 

medium

 

observed

 

affect

 

sacrifice

 
derived