FREE BOOKS

Author's List




PREV.   NEXT  
|<   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432  
433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   448   449   450   451   452   453   454   455   456   457   >>   >|  
for the wet collodion-plates hitherto in use; and this improvement alone reduced the necessary time of exposure to two hours. It was brought down to half an hour by Janssen's employment of a reflector specially adapted to give an image illuminated eight or ten times as strongly as that produced in the focus of an ordinary telescope.[1298] The photographic feebleness of cometary rays was not the only obstacle in the way of success. The proper motion of these bodies is so rapid as to render the usual devices for keeping a heavenly body steadily in view quite inapplicable. The machinery by which the diurnal movement of the sphere is followed, must be especially modified to suit each eccentric career. This, too, was done, and on June 30, 1881, Janssen secured a perfect photograph of the brilliant object then visible, showing the structure of the tail with beautiful distinctness to a distance of 2-1/2 deg. from the head. An impression to nearly 10 deg. was obtained about the same time by Dr. Henry Draper at New York, with an exposure of 162 minutes.[1299] Tebbutt's (or comet 1881 iii.) was also the first comet of which the spectrum was so much as attempted to be chemically recorded. Both Huggins and Draper were successful in this respect, but Huggins was more completely so.[1300] The importance of the feat consisted in its throwing open to investigation a part of the spectrum invisible to the eye, and so affording an additional test of cometary constitution. The result was fully to confirm the origin from carbon-compounds assigned to the visible rays, by disclosing additional bands belonging to the same series in the ultra-violet; as well as to establish unmistakably the presence of a not inconsiderable proportion of reflected solar light by the clear impression of some of the principal Fraunhofer lines. Thus the polariscope was found to have told the truth, though not the whole truth. The photograph so satisfactorily communicative was taken by Sir William Huggins on the night of June 24; and on the 29th, at Greenwich, the tell-tale Fraunhofer lines were perceived to interrupt the visible range of the spectrum. This was at first so vividly continuous, that the characteristic cometary bands could scarcely be detached from their bright background. But as the nucleus faded towards the end of June, they came out strongly, and were more and more clearly seen, both at Greenwich and at Princeton, to agree, not with the spect
PREV.   NEXT  
|<   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432  
433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   448   449   450   451   452   453   454   455   456   457   >>   >|  



Top keywords:

cometary

 

spectrum

 

visible

 
Huggins
 

Fraunhofer

 
Greenwich
 

strongly

 
photograph
 

additional

 
exposure

Janssen

 
Draper
 
impression
 
assigned
 

compounds

 
successful
 

respect

 

disclosing

 

violet

 
series

belonging

 

investigation

 
recorded
 

carbon

 

origin

 

importance

 

constitution

 

invisible

 

consisted

 

result


throwing

 

completely

 

confirm

 
affording
 

polariscope

 

detached

 
scarcely
 

bright

 
background
 

characteristic


interrupt

 
perceived
 

vividly

 
continuous
 

nucleus

 

Princeton

 
principal
 

chemically

 

presence

 

unmistakably