FREE BOOKS

Author's List




PREV.   NEXT  
|<   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311  
312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   >>   >|  
disc, and judged to be permanent, were made the basis of a chart. They were not indeed always equally well seen. They disappeared regularly near the limb, and were at times veiled even when centrally situated. Some of them had been clearly perceived by De Ball at Bothkamp in 1882.[820] Mr. Lowell followed Schiaparelli's example by observing Mercury in the full glare of noon. "The best time to study him," he remarked, "is when planetary almanacs state 'Mercury invisible.'" A remarkable series of drawings executed, some at Flagstaff in 1896, the remainder at Mexico in 1897, supplied grounds for the following, among other, conclusions.[821] Mercury rotates synchronously with its revolution--that is, once in 88 days--on an axis sensibly perpendicular to its orbital plane. No certain signs of a Mercurian atmosphere are visible. The globe is seamed and furrowed with long narrow markings, explicable as cracks in cooling. It is, and always was, a dead world. From micrometrical measures, moreover, the inferences were drawn that the planet's mass has a probable value about 1/20 that of the earth, while its mean density falls considerably short of the terrestrial standard. The theory of Mercury's movements has always given trouble. In Lalande's,[822] as in Maestlin's time, the planet seemed to exist for no other purpose than to throw discredit on astronomers; and even to Leverrier's powerful analysis it long proved recalcitrant. On the 12th of September, 1869, however, he was able to announce before the Academy of Sciences[823] the terms of a compromise between observation and calculation. They involved the addition of a new member to the solar system. The hitherto unrecognised presence of a body about the size of Mercury itself revolving at somewhat less than half its mean distance from the sun (or, if farther, then of less mass, and _vice versa_), would, it was pointed out, produce exactly the effect required, of displacing the perihelion of the former planet 38" a century more than could otherwise be accounted for. The planes of the two orbits, however, should not lie far apart, as otherwise a nodal disturbance would arise not perceived to exist. It was added that a ring of asteroids similarly placed would answer the purpose equally well, and was more likely to have escaped notice. Upon the heels of this forecast followed promptly a seeming verification. Dr. Lescarbault, a physician residing at Orgeres, whose slender oppo
PREV.   NEXT  
|<   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311  
312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   333   334   335   336   >>   >|  



Top keywords:

Mercury

 

planet

 

perceived

 

equally

 

purpose

 
revolving
 

calculation

 

unrecognised

 

observation

 
involved

presence

 

addition

 
member
 

system

 

hitherto

 

astronomers

 

discredit

 

Leverrier

 

powerful

 
analysis

Lalande

 

Maestlin

 

proved

 

recalcitrant

 

Academy

 

Sciences

 

announce

 
September
 

compromise

 

answer


notice

 

escaped

 

similarly

 

asteroids

 
disturbance
 

residing

 

physician

 

Orgeres

 
slender
 
Lescarbault

forecast

 

promptly

 

verification

 

pointed

 

produce

 

farther

 

distance

 
effect
 

required

 

planes