FREE BOOKS

Author's List




PREV.   NEXT  
|<   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299  
300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   >>   >|  
d of parallaxes." Its principle consists in substituting successive morning and evening observations from the same spot, for simultaneous observations from remote spots, the rotation of the earth supplying the necessary difference in the points of view. Its great advantage is that of unity in performance. A single mind, looking through the same pair of eyes, reinforced with the same optical appliances, is employed throughout, and the errors inseparable from the combination of data collected under different conditions are avoided. There are many cases in which one man can do the work of two better than two men can do the work of one. The result of Gill's skilful determinations (made with Lord Lindsay's heliometer) was a solar parallax of 8.78", corresponding to a distance of 93,080,000 miles.[776] The bestowal of the Royal Astronomical Society's gold medal stamped the merit of this distinguished service. But there are other subjects for this kind of inquiry besides Mars and Venus. Professor Galle of Breslau suggested in 1872[777] that some of the minor planets might be got to repay astronomers for much disinterested toil spent in unravelling their motions, by lending aid to their efforts towards a correct celestial survey. Ten or twelve come near enough, and are bright enough for the purpose; in fact, the absence of sensible magnitude is one of their chief recommendations, since a point of light offers far greater facilities for exact measurement than a disc. The first attempt to work this new vein was made at the opposition of Phocaea in 1872; and from observations of Flora in the following year at twelve observatories in the northern and southern hemispheres, Galle deduced a solar parallax of 8.87".[778] At Mauritius in 1874, Lord Lindsay and Sir David Gill applied the "diurnal method" to Juno, then conveniently situated for the purpose; and the continued use of similar occasions affords an unexceptionable means for improving knowledge of the sun's distance. They frequently recur; they need no elaborate preparation; a single astronomer armed with a heliometer can do all the requisite work. Dr. Gill, however, organized a more complex plan of operations upon Iris in 1888, and upon Victoria and Sappho in 1889. A novel method was adopted. Its object was to secure simultaneous observations made from opposite sides of the globe just when the planet lay in the plane passing through the centre of the earth and the two observe
PREV.   NEXT  
|<   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299  
300   301   302   303   304   305   306   307   308   309   310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   >>   >|  



Top keywords:

observations

 

heliometer

 

Lindsay

 

distance

 
purpose
 

twelve

 

method

 

simultaneous

 
parallax
 

single


Phocaea
 
opposition
 

Victoria

 

observatories

 

northern

 

centre

 

Mauritius

 

deduced

 

southern

 

hemispheres


Sappho
 

absence

 

magnitude

 

observe

 

adopted

 

bright

 
recommendations
 
measurement
 

attempt

 
facilities

greater

 

offers

 
frequently
 

opposite

 

knowledge

 
improving
 
requisite
 

secure

 

elaborate

 

preparation


astronomer

 

complex

 

continued

 
object
 

passing

 
situated
 

diurnal

 

organized

 

conveniently

 
operations