FREE BOOKS

Author's List




PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  
s blackened within, though less intense, will also answer. An intense _line_ of light is obtained by admitting the sunlight through a slit and sending it through a strong cylindrical lens. The slice of light is contracted to a physical line at the focus of the lens. A glass tube blackened within and placed in the light, reflects from its surface a luminous line which, though less intense, also answers the purpose. In the experiment now to be described a vertical slit of variable width is placed in front of the electric lamp, and this slit is looked at from a distance through another vertical slit, also of variable aperture, and held in the hand. The light of the lamp being, in the first place, rendered monochromatic by placing a pure red glass in front of the slit, when the eye is placed in the straight line drawn through both slits an extraordinary appearance (shown in fig. 15) is observed. Firstly, the slit in front of the lamp is seen as a vivid rectangle of light; but right and left of it is a long series of rectangles, decreasing in vividness, and separated from each other by intervals of absolute darkness. The breadth of these bands is seen to vary with the width of the slit held before the eye. When the slit is widened the bands become narrower, and crowd more losely together; when the slit is narrowed, the individual bands widen and also retreat from each other, leaving between them wider spaces of darkness than before. [Illustration: Fig. 15.] Leaving everything else unchanged, let a blue glass or a solution of ammonia-sulphate of copper, which gives a very pure blue, be placed in the path of the light. A series of blue bands is thus obtained, exactly like the former in all respects save one; the blue rectangles are _narrower_, and they are _closer together_ than the red ones. If we employ colours of intermediate refrangibilities, which we may do by causing the different colours of a spectrum to shine through the slit, we obtain bands of colour intermediate in width, and occupying intermediate positions, between those of the red and blue. The aspect of the bands in red, green, and violet light is represented in fig. 16. When _white light_, therefore, passes through the slit the various colours are not superposed, and instead of a series of monochromatic bands, separated from each other by intervals of darkness, we have a series of coloured spectra placed side by side. When the distant slit is illu
PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  



Top keywords:
series
 

colours

 

darkness

 

intermediate

 

intense

 
vertical
 
variable
 

separated

 
blackened
 

rectangles


intervals

 

narrower

 
obtained
 

monochromatic

 
Leaving
 

Illustration

 
spaces
 
unchanged
 

ammonia

 

sulphate


solution

 

copper

 

causing

 

represented

 

violet

 

aspect

 

passes

 

spectra

 

distant

 

coloured


superposed

 
positions
 

occupying

 

closer

 

respects

 
employ
 

refrangibilities

 
obtain
 

colour

 
spectrum

leaving
 

experiment

 
purpose
 
luminous
 

answers

 

electric

 
aperture
 

looked

 
distance
 

surface