FREE BOOKS

Author's List




PREV.   NEXT  
|<   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129  
130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   >>   >|  
it will be seen that the upper (positive) carbon of the open-arc emits most of the light. Thus most of the light tends to be sent downward, but the lower carbon obstructs some of this with a resulting dark spot beneath the lamp. The gas-mantle followed closely after the arrival of the carbon arc and is responsible for the existence of gas-lighting on the streets at the present time. It is a large source of light and therefore its light cannot be controlled by modern accessories as well as the light from smaller sources, such as the arc or concentrated-filament lamp. As a consequence, there is marked unevenness of illumination along the streets unless the gas-mantle units are spaced rather closely. Even with the open-arc, without special light-controlling equipment there is about a thousand times the intensity near the lamps when placed on the corners of the block as there is midway between them. In 1879 the incandescent filament lamp was introduced and it began to appear on the streets in a short time. It was a feeble, inefficient light-source, compared with the arc-lamp, but it had the advantage of being installed on a small bracket. As a consequence of simplicity of operation, the incandescent lamp was installed to a considerable extent, especially in the suburban districts. [Illustration: THE MOORE NITROGEN TUBE In lobby of Madison Square Garden] [Illustration: CARBON-DIOXIDE TUBE FOR ACCURATE COLOR-MATCHING] [Illustration: MODERN STREET LIGHTING Tunnels of light boring through the darkness provide safe channels for modern traffic] The open-arc lamp possessed the disadvantage of emitting a very unsteady light and of consuming the carbons so rapidly that daily trimming was often necessary. In 1893 the enclosed arc appeared and although it consumed as much electrical energy as the open-arc and emitted considerably less light, it possessed the great advantage of operating a week without requiring a renewal of carbons. By surrounding the arc by means of a glass globe, little oxygen could come in contact with the carbons and they were not consumed very rapidly. The light was fairly steady and these arcs operated satisfactorily on alternating current. The latter feature simplified the generating and distributing equipment of the central station. The magnetite or luminous arc-lamp next appeared and met with considerable success. It was more efficient than the preceding lamps but was handicapped by being
PREV.   NEXT  
|<   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129  
130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   154   >>   >|  



Top keywords:

carbons

 
carbon
 

streets

 

Illustration

 

source

 

incandescent

 

modern

 

filament

 

consumed

 

equipment


appeared

 

consequence

 

rapidly

 

possessed

 

installed

 

mantle

 

considerable

 

advantage

 

closely

 

trimming


Tunnels

 

LIGHTING

 

MATCHING

 

MODERN

 

STREET

 

enclosed

 

provide

 

DIOXIDE

 

emitting

 

disadvantage


ACCURATE

 

traffic

 
unsteady
 
CARBON
 

darkness

 

channels

 

consuming

 

boring

 

feature

 

simplified


generating

 

distributing

 

current

 

alternating

 

operated

 

satisfactorily

 

central

 

station

 

efficient

 
preceding